
How Design Style Relates to the

Representational Power of Design Outcomes

Cláudia Werner, Rafael Cepeda, Marcelo Schots

Programa de Engenharia de Sistemas e Computação

Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brazil

{werner, rcepeda, schots}@cos.ufrj.br

Leonardo Murta

Instituto de Computação

Universidade Federal Fluminense

Niterói, Brazil

leomurta@ic.uff.br

Abstract — Our hypothesis in this paper is that the design style

can relate to the representational power of the design outcomes.

To study this hypothesis, we analyzed three professional design

sessions showing people designing software with different

strategies (i.e., different design styles). We also analyzed the

design outcomes provided by each strategy and the

representational power of these design outcomes. Our results

provide some evidence in terms of two metrics: innovation and

coverage. Finally, we discuss some automation requirements for

tools that can support the design process. One of the conclusions

we extract from this study is that a unified method for designing

software, one that combines tools and techniques found on an

object-oriented design style with tools and techniques found on a

Human-Computer Interaction (HCI) design style could lead to

more powerful design outcomes. This, in turn, could lead to more

innovative and effective products that fullfil the requirements

imposed by the user’s problem.

Keywords - software design; professional design; design styles;

design outcomes; design tools

I. INTRODUCTION

Software design is a problem-solving activity that links the
problem domain with the solution domain [1]. In other words,
it could be thought as a process that transforms the output of
the requirements analysis phase into a formal or informal
specification of the solution, which serves as input to
programmers. Usually, this transformation process is
conducted by some abstraction mechanism, i.e., some process
of removing detail to simplify and focus attention along with
the process of generalization to identify the common core or
essence of the object under analysis [2]. The essence of this is
identifying, organizing, and presenting appropriate details
while suppressing details that are not currently relevant [3].

The strategies adopted during design, called design styles in
this paper, may dictate the way design outcomes are structured.
These design outcomes, on the other hand, may have different
representational power. In some cases, fewer design outcomes
are able to represent many aspects (views) of the software
(architecture). In other cases, each design outcome is focused
on specific aspects of the software, requiring complementary
design outcomes to allow a comprehensive view of the
software.

In this paper we analyze three videos of professional design
sessions according to different design strategies. Each of these

design sessions has its particular characteristics, differing both
in design style and design outcomes. Our main goal is to
analyze how the three different design styles lead to different
design outcomes. It is important to note that our conclusions
were strictly derived from the videos. We did not have access
to direct interview or asked questions to the participants.

In the video sessions, each professional team was asked to
design a traffic flow simulation program. One of the expected
results of this task is to present the achieved design to a team of
software developers who should be able to implement it. The
traffic flow simulation program aims to help civil engineering
students to understand the basic concepts and theory regarding
the topic of traffic signal timing, allowing students to learn
from practice. Along with other requirements, students must be
able to create a visual map of an area and layout roads in some
chosen pattern. Besides, the students must also be able to
describe the behavior of the traffic lights at each intersection.
Therefore, as it can be observed, this program has a very
important subject on user interaction to deal with.

The first design session (called DS1) team was composed
by two men with a noticeable difference in age. The older
member (38 years old) has 16 years of professional experience,
while the younger member has almost 11 years of professional
experience, as mentioned in the video. They both have a strong
background on object-oriented software projects. The second
design session (called DS2) team has one man and one woman
as members. Both appeared to have around the same age, but
she has a longer time of professional experience, demonstrated
by her 26 years working with object-oriented systems, user
interface (UI) design, and application development. The other
member has 20 years of experience, most on interaction design
and on curriculum development fields. The third design session
(called DS3) team has two men as members. The difference on
age between them seems to be at most 10 years. However, their
experience could not be detected based on the video analysis.

Our analysis is presented in this paper according to the
following process:

1. Identify the design style of each design session

2. Identify the type of outcome of each design session

3. Identify the time spent to build each outcome type
identified in step 2

4. Identify appropriate metrics to compare the
representational power of the outcomes identified in
step 2

5. Contrast the representational power of the outcomes
identified in step 2, considering the time spent to build
them, identified in step 3, and the metrics identified in
step 4

6. Provide a qualitative analysis of the design sessions to
explain the finding of the quantitative analysis
performed in step 5, relating the design styles to the
representational power of the design outcomes and
identifying the weak aspects of each design session

7. Suggest some tool requirements to support each of the
three design styles according to the aspects identified
in step 6

The enactment of this process required us to analyze the
whole design sessions data, both in high level, to identify the
design styles, and in detail, to measure the outcomes.
Moreover, our research considers the existing design styles
(e.g., traditional object-oriented design), the existing design
outcome types (e.g., class diagrams), and the existing metrics
to correlate design style with representational power of design
outcomes (e.g., coverage).

The remaining of this paper is divided into 5 sections.
Section 2 classifies the design sessions in terms of design styles
and design outcomes (steps 1 and 2 of the analysis process).
Section 3 provides a quantitative analysis of the design sessions
considering specific analysis metrics (steps 3, 4 and 5 of the
analysis process). Section 4 provides a qualitative analysis of
the design sessions built upon the quantitative analysis
described in Section 3 (step 6 of the analysis process). Section
5 provides some insights on how tools could help in the three
design sessions (step 7 of the analysis process). Finally, section
6 concludes the paper highlighting its contributions and
limitations, and anticipating some future works.

II. DESIGN SESSIONS CLASSIFICATION

In order to proceed with our analysis, we first identified
each design style applied on each design session. Thereafter we
analyzed the outcomes produced in each design session.
Finally, we mapped the design strategy and the artifacts created
during each session.

A. Design Styles

A design style can be characterized by its mode of
operation and its means of expression [4]. Basically, the mode
of operation can be divided in analytical and experimental. The
mode of operation can be thought as the process of
transforming the available information about the system being
developed in appropriate design decisions to accomplish its
construction. When abstraction is adopted to simplify the
domain information, resulting in a common and deeper
understanding, it is said that the analytical operation mode is
used. However, if previous experience is used to produce
additional information, it is said that the experimental operation
mode is used. On the other hand, the means of expression are
comprised of specifications and prototypes. The means of

expression can be considered as the way development teams
express themselves to transform abstract ideas of the software
into concrete design artifacts. When formalisms are used to
represent different aspects of the initial ideas of the software,
the specification expression is in place. However, when
developers immediately start to write proof of concept user
interfaces, the prototype expression is appropriate.

DS1 concentrates basically on domain analysis in order to
build the software design. Based on an informal sketching, the
engineers tried to understand the basic dynamics regarding the
traffic problem. However, using some key user scenarios, they
produced a detailed UML-like design as outcome, containing
the most important domain concepts and their relationships. On
the other hand, DS2 was guided by the user interaction
analysis, finding out the key inherent software concepts and
building a common understanding of the problem. As a result,
besides creating a high-level design using the previously
identified concepts, they also ended up with a user interface
(UI) draft of what could be the target application. Finally, DS3
primarily focused on the data analysis associated to the given
problem. They used a creative process similar to the process
used by the DS1 team. However, in this case, they first
identified the concepts, and then performed a domain study,
based on a sketching process, to verify its validity. In the end,
they were able to produce an informal design, using a free
notation, containing the main concepts found, their properties
and some associative relationships. The summarization of the
design styles applied by each design session can be observed in
Table 1.

Table 1. Design style summary for each design session

Design Session
Mode of

Operation

Means of

Expression

1 Analytical Specification

2 Analytical Prototype

3 Analytical Specification

B. Design Outcomes

A design outcome can be seen as any artifact produced
during the software design phase. We can divide design
outcomes into two groups: formal and informal outcomes. The
formal outcomes usually follow a specific notation with a
strong semantic. They are usually well understood by the
majority of software developers. On the other hand, the
informal outcomes are notation free, but they have a strong
representational power. In this case, developers should
previously agree on the meaning of the outcomes via tacit or
explicit (e.g., legend) communication. Examples of formal
outcomes are UML diagrams, design patterns, business rules,
etc. Examples of informal outcomes are diagrams without
following a specific notation, usage scenarios, UI prototypes,
etc.

DS1 produced the following outcomes: i) A high level
UML design containing the main concepts identified during the
session and the relationships between them. It is important to
note that these relationships do not have a strong semantic. In
other words, they can assume in some cases the identity of
association and in other cases the identity of composition, for

instance. ii) Along with concepts identified before, the team
also uses the Visitor design pattern [5] as a design decision in
order to decouple the controller entity from the remaining
structure of the system. iii) The draft made by them of a real
scenario represents the problem domain. This scenario, along
with others, was used to understand the given domain and the
problems related, and to identify the main objects needed to
assemble the system. iv) A set of state transition rules was
specified to control each possible state to which the system can
change.

DS2 resulted in a high level design, containing some UI
drafts of what the final system would be, indicating different
views of the system in terms of user interactions. These
prototypes are linked with arrows that represent the system
workflow, like a UI navigation diagram. The design outcome
also contains some domain entities (contained in a UML-like
diagram), derived from storyboards that were used during
design.

DS3 produced a data-driven result, which was similar to a
mind-map. It contains concepts (or entities) and their
relationships, including the properties of some of these entities.
There is also a draft that seemed to be used for understanding
the problem domain. The members used different colors for
representing different layers to keep track of the design steps.
The summarization of the design outcomes derived by each
design session can be observed in Table 2 (note that the
designation of formal outcomes does not imply in correctness
of notation use).

Table 2. Design outcomes summary for each design session

Design

Session

Formal

outcomes

Informal

outcomes

1

UML diagrams

Visitor design pattern

State transition rules

Relationships among

concepts

Draft usage scenario

2
UML diagrams

Requirements refinement

UI navigation diagram

(including UI drafts)

3 --

Concepts (entities)

Relationship among

concepts

Draft usage scenario

C. Classification in Terms of Design Styles and Outcomes

According to our analysis, summarized in Table 1 and
Table 2, we could note that the DS1 team followed an
analytical operation mode, mainly focusing on refining abstract
specifications of the software. Due to that design style, the
main obtained outcomes were formal, such as UML diagrams,
design patterns and state transition rules. However, we could
also observe some informal outcomes, such as relationships

among concepts and draft usage scenario, which help on
understanding the formal ones.

On the other hand, the DS2 team followed another design
style: the use of prototypes as means of abstraction. This team
also employed an analytical mode of operation, but focused
from the beginning on a proof-of-concept prototype. Note that
the concept of prototype here refers to the fundamental idea
involving this popular software engineering technique, which is
to quickly create results that somehow provide the stakeholders
a way to contribute with important feedback about the ongoing
development of the product [6]. As a result of the adoption of
this style by DS2, we could observe a more comprehensive set
of informal outcomes, such as UI drafts and UI navigation
diagrams. From these informal outcomes, we could also
observe the derivation of one formal outcome, a UML-like
class diagram.

Finally, the DS3 team adopted a design style similar to
DS1: the use of an analytical mode of operation based on the
refinement of specifications as means of expression. However,
this team worked in a less systematic way if compared to DS1.
As a result, we could observe only some concepts, the
relationships among them, and a draft usage scenario as
informal outcomes. We did not recognize any formal outcome
for this session.

III. QUANTITATIVE ANALYSIS

Aiming at comprehending the effect of design styles in the
design outcomes, we continue our analysis by adding some
quantitative measures in the comparison. The variables
considered at this moment are design session duration and
number of distinguishable concepts discovered by each session.
Initially, it is possible to note that the outcome produced by the
DS1 team was built in approximately 1 hour and 53 minutes,
and had 7 software concepts. DS2 took roughly 1 hour and 54
minutes and produced, without counting the UI draft, a
software design containing 13 software concepts. Finally, the
DS3 team spent 58 minutes to create a design with 9 concepts.
Note that we are only considering the concepts that appeared in
the final model, and not those speculated during the sessions.

Figure 1 shows a comparative view of the three sessions in
terms of the outcomes of each design and the time spent on
each session.

0 20 40 60 80 100 120

DS3

DS2

DS1

time spent (minutes)

of concepts

Figure 1. Time spent vs number of concepts: comparative view

The remaining of this section goes deeper on the
quantitative analysis, considering additional metrics and
providing our considerations regarding the obtained results.

A. Analysis Metrics and Data

By analyzing the commonalities and differences between
each element set produced by each team, it is possible to assess
the completeness of each design created (when compared to the
other two), assuming that every element is relevant to the
problem. Note that it is difficult to do a different level of
analysis, considering that there is no reference design available
and a design inspection was not conducted. Nevertheless, this
is not the purpose of this paper.

Regarding the metrics adopted in this quantitative analysis,
we were inspired in two classic metrics from the information
retrieval field [7]: precision (the fraction of retrieved
documents which are known to be relevant) and recall (the
fraction of known relevant documents which were effectively
retrieved). However, in our context, a good design session
should be able to discover as much concepts as the other design
sessions (high coverage level), and also discover some
additional concepts that were not discovered in the other design
sessions (high innovation level).

Due to the absence of a reference design, we consider the
concepts discovered by the other two sessions as reference and
apply two metrics: innovation and coverage. Innovation is
inspired in precision (precision has no useful meaning in our
context, assuming that all concepts are considered relevant),
but represents the fraction of concepts discovered in the design
session over analysis that were not discovered in the other
design sessions. On the other hand, coverage is identical to
recall, representing the fraction of concepts discovered in the
other design sessions that were also discovered in the design
session over analysis. For instance, assuming that we are

analyzing DS1 against DS2 and DS3, we can state that
innovation represents the percentage of concepts discovered by
DS1 that were not discovered by DS2 and DS3, and coverage
represents the percentage of concepts discovered by DS2 and
DS3 that were also discovered by DS1. In both cases, the
denominator of the fraction is the total number of concepts
discovered in the other design sessions (in the previous
example, DS2 and DS3).

Figures 2, 3, and 4 show the outcomes of DS1, DS2, and
DS3, respectively (some image processing operations were
applied for showing only the relevant part of each video
screenshot). Initially, we can observe the concepts discovered
by each design session. First, regarding DS1, the following
concepts were discovered: Cop, Car, Intersection, Light,
Network, Queue, and Road. On the other hand, DS2 discovered
the following concepts: Approach, Block, Car, Simulation
Configuration, Intersection, Light, Map, Light Configuration,
Road, Sensor, Left-Hand Signal, Traffic Configuration and
Simulation Result. Finally, DS3 discovered the following
concepts: Controller, Car, Intersection, Map, Road, Signal,
Speed, Inputs, and Output. It is important to mention that these
are the concepts that we could identify during our analysis.
Because of the camera position, environment lighting and the
colors used during design, some parts of the design outcomes
(especially DS3 outcome) are illegible in the video.

Some concepts that have different names may have the
same meaning. Due to this, we provide in Table 3 a diff among
the sets of concepts discovered by the three design session
teams. In this table, it is possible to notice that some concepts
such as Clock, Simulation, and Time actually correspond to the
same intention: provide a way of enacting the traffic model.
This table is the main product of this subsection, providing the
necessary information to the quantitative analysis itself,
presented in the next subsection.

Figure 2. DS1 outcome

Figure 3. DS2 outcome

Figure 4. DS3 outcome

Table 3. Diff among discovered concepts

DS1 DS2 DS3

 Approach

 Block

Cop Controller

Car Car Car

Simulation

Configuration

Intersection Intersection Intersection

Light Light

 Map Map

Network
Light

Configuration

Queue

Road Road Road

 Sensor

 Left-Hand Signal Signal

 Speed

Traffic

Configuration
Inputs

 Simulation Result Output

B. Quantitative Analysis Results

According to the selected metrics, when contrasting DS1
with the union of DS2 and DS3, we can find 7% of innovation
(1/15) and around 40% of coverage (6/15). However, when
contrasting DS2 with the union of DS1 and DS3, it can be
noted a significantly higher innovation, around 33% (4/12), and
also a significantly higher coverage, around 75% (9/12).
Finally, when contrasting DS3 with the union of DS1 and DS2,
we can observe that the innovation level of DS3 (1/15 = 7%)
and its coverage level (8/15 = 53%) are both closer to DS1 than
to DS2.

Given this analysis, DS2 presented better results in terms of
innovation and coverage, if compared to DS1 and DS3.
Recalling Table 1, we can note that the only design section that
adopted prototype as means of expression was DS2. This can
lead to an intriguing question: Do prototype-based design
styles lead to higher representational power of the design
outcomes, if contrasted to specification-based design styles?
Unfortunately, we cannot answer this question in a general way
with the available data, but it represented at least a specific
case that this occurred. Additional work should be done in this
direction.

While, as mentioned before, we cannot show it effectively
(i.e., through rigorous empirical evidence), in the next section
we shall try to present some arguments that, in some way,
justify the results obtained in this section. In this sense, we
show that the prototype-based approach adopted by the DS2
team, although not being totally adherent to the software
engineering practices equally named, as explained earlier in
this paper, uses the same fundamental idea (i.e., quickly
produces means by which users and staff can better understand
the system requirements) to more effectively influence the
factors that possibly lead to a better design.

However, it is important to note that richest results do not
necessarily mean best results. This is because the
representational power of the output generated by the design
process is intrinsically linked with its abstraction power. Thus,
better results are associated to their ability on presenting the
relevant points and on hiding not important aspects regarding
the problem being solved and the customer involved.

IV. QUALITATIVE ANALYSIS

A first superficial analysis of the provided videos enabled
us to observe that none of the teams followed a formal, pre-
established process for design. The three design teams were
trying to match the requirements while designing, but each
team had a different way for doing it. DS1 mainly focused on
the system viewpoint. DS2 designed the system while trying to
identify the user’s needs for that system. Lastly, DS3 was
trying to verify whether the design was meeting the system use
cases (although the use cases were not explicitly included on
their design).

Meanwhile, by carefully analyzing the design sessions, we
found that the abstraction procedure adopted by the DS1 and
DS3 teams basically looks like the one advocated by the
object-oriented paradigm. That is, the design process focuses
on mapping real-world entities of the problem into entities in
the software-world, called objects [8]. As it can be seen in the
videos, the DS1 and DS3 teams extract almost every concept
through the analysis (using whiteboard sketching) of one or
more everyday situations related to ground traffic.

On the other hand, the DS2 team, besides employing the
same methods practiced by the other teams, also adopted
something near to what can be called Human-Computer
Interaction (HCI) design as an important guide during the
session. This can be seen by the constant concern of the team
on how the system users would interact with it, so that
throughout the design session a user interface has been created
and adapted to each new understanding of the problem and
insight about the solution. Concepts such as Approach and
Block came to light primarily by exploiting the interface
created on-the-fly by the team.

Therefore, by using a mechanism similar to prototype, each
new understanding of the problem and insight about the
solution generated a change on the created user interface. By
exploiting the interface sketch and usage prediction, sometimes
new understandings and insights were created, producing
updates in the design of the system and its interface sketch
once again.

Although it seems clear that worrying about aspects of the
interaction between the system and its users is beneficial to the
process of software development, practitioners in the area
demands a certain effort to put such concern in practice during
software design. As observed by Taylor and Hoek [9], the
focus usually considered along software design is primarily
restricted to its internal structure and attributes, as for example
on how to identify which components and connectors it shall
be comprised of. Thus, the way they will expose its
characteristics and features is usually disregarded.

A direct consequence of this is a system that does not meet
the user’s requirements, or when presenting its features they
turn out to be inappropriate or even unproductive. Moreover, it
can also be argued that it is easier to explain for a programmer
why a particular design has been created in such a way using
the interactions that the user must make on the system as
reference rather than try to explain it by using a background
based only in the application domain. For example, it is easier
to explain that a particular object must have certain attributes
because they are part of the form to be filled in by the user on
the web than spending hours explaining that such attributes
exist because of some government regulations. And without the
support of an interface in the form of a prototype or a sketch it
will be difficult to perform the first approach effectively.

Therefore, one possible explanation for a better result in
terms of innovation and coverage by the DS2 team can be
made based on the methods used during the design session.
Such methods, besides involving the usual decomposition of
the system using some kind of an object-oriented thought, also
had another support by designing the interaction between users
and the system. Thus, we can say that the process of
abstraction used, in addition to having been influenced by
domain factors, was also strongly influenced by HCI factors.
The first set of factors represents the dynamics of the problem
being addressed in real life. That is, the laws that govern such
scenario. In this case, we can cite the laws of physics (e.g., two
cars can not occupy the same physical space), traffic laws (e.g.,
cars must stop at red lights) and consent laws (e.g., who will
have preference in crosses). On the other hand, the second
group of factors corresponds to the design principles of UI [10,
11], such as maintaining a simple interface, offering the user
quick shortcuts to procedures that are apparently more
complicated (e.g., intersection settings can be defined with an
intuitive click on the intersection of two streets on the map of
the system designed by the DS2 team).

As shown in Figure 5, the introduction of HCI design over
the traditional software design reveals new factors which could
positively influence the creation of appropriate models for it. In
the scenario described in this figure, the following problem is
proposed: digital scan the entire content of a book that will be
used later for learning purposes. Without any concern on how
the interaction of the final product with its users will be, i.e., by
only observing the domain factors, a product without value
would probably be generated in this case, since users of such a
system are visually impaired. In this context, the adoption of
methods of HCI design over the traditional software design
could possibly generate a model more suitable for this
application. Note that often it is not just a model with
additional features (such as playbacking the entire book), but a
totally different way of thinking about the system, thus,
potentially encouraging more innovative models and adherent
to the user’s needs.

Although our analysis primarly focused on the
decomposition and abstraction methods used, other aspects
(e.g., social and motivational) should be considered in order to
gain a better understanding of the analyzed design sessions. In
this context, three additional videos were provided with an
interview conducted with each pair of designers for a brief
overview of the main points of the resulting design. As

discussed before, one of the expected results of the sessions is
to present the achieved design to a team of software developers
who should be able to implement it. During these design
summaries, the DS2 and DS3 teams affirmed that they were
satisfied with the outcome of their project, considering the time
constraint (DS1 team’s answer was not included in the related
video).

The Problem The User

The Models

HCI

Factors

Domain

Factors

Figure 5. Influence of domain and HCI factors on software models.

During the video analysis, we noted that, although both
members were present during DS1 session, most of the time it
was conducted by one person – the younger member only
made some comments. The team also affirmed that they had
never designed together before. DS2 team members seemed to
be more integrated; the interaction between them seemed
balanced, harmonious and complementary (this is in agreement
with the results of the quantitative analysis). Finally, DS3
session was conducted in an ad-hoc manner; it was quite close
to an agile design. One of the members mentioned that it is
possible to start programming from the session outcome.

We also observed that the academic and professional
background of each team somehow contributed to the way the
design session was conducted. The DS1 team was used to
object-oriented decomposition. The DS2 team worked for years
on UI development and interaction design. And the DS3 team
has based design in a data-driven process.

V. HOW TOOLS COULD HELP?

Based on the quantitative and qualitative analysis, we
present in this section some automation requirements for the

design process. We also suggest some tools based on the
established requirements.

A. Automation requirements

In all sessions, the available space did not seem to be
enough for designers to express their thoughts and perceptions.
Part of the data written on the whiteboard was deleted (DS1
and DS2) or the unavailable area of the whiteboard was used
(DS1). Moreover, some design elements were mixed up with
other sketching elements, such as design entities, elements for
domain understanding, UI elements, and lower-level domain
representations. This indicates that a useful feature for a tool
support would be to provide different layers for representing
each design view, allowing the identification of relationships
and interactions between design elements, and the creation of
links for navigating among them. This could lead to traceability
in terms of abstraction levels, which can improve
comprehension and, consequently, encourage reuse.

Since the members of each team added, deleted, and
changed some design parts during the process, another useful
functionality for controlling design evolution is fine-grained
design versioning. This is especially important for large teams
in a distributed environment, considering that concurrent work
is a typical scenario in this context. In this kind of tool, a visual
diff and merge feature would also be desirable.

Finally, we perceived the need of a mechanism that keeps
track of the design rationale. During the design sessions, teams
discussed why they were making specific decisions and
choosing specific solutions in detriment of other solutions. This
knowledge is very important to developers when implementing
the design or even to other designers during the design
maintenance and evolution. It is important to note that design
rationale can be materialized in terms of different kinds of
hypermedia contents, such as text, audio (recording the team
speeches) or even video (recording the team gestures and
reactions).

According to the arguments presented in this section, the
following automation requirements should be considered for a
tool that aims at supporting software design activities:

• Design layers

• Traceability (among design elements and
abstraction levels)

• Navigability (using the previously mentioned
traceability)

• Fine-grained versioning

• Visual diff/merge

• Design rationale

B. Tools suggestions

We believe that some tools could be used/developed in the
context of design, in order to support the teams. We present a
high-level analysis of the tools available in software
engineering in order to indicate how each tool can support the
above requirements.

For solving the need of more space, a sketch-based tool that
makes use of open canvas can be used, like [12]. This tool must
allow multiple, navigable layers for design, allowing to keep
track of different steps or different architectural layers in the
same design session.

Regarding traceability, different researches focused on this
theme, ranging from the establishment of traceability by
construction to the after-the-fact detection of traceability via
information retrieval [13], syntactic analysis [14] or data
mining techniques [15].

Navigability can be seen as a natural consequence of the
traceability adoption. Interesting solutions in this area are
found, specially related to the hypertext/hypermedia
communities [16,17].

With respect to design evolution, it is interesting to have a
version control system for managing changes to design
artifacts. As mentioned before, such changes should be
considered in a lower level of granularity, so that it can help to
identify which changes occurred in a specific element, in a
specific context [18,19].

Moreover, since visual strategies (such as the use of
different colors, sizes and shapes, or even virtual and
augmented reality approaches) can help in understanding the
design process and evolution [20,21], it can be interesting to
provide UI interaction techniques that can handle cognitive
tasks [22].

Finally, design rationale [23] is an important topic in the
field of requirements engineering, but its importance goes
beyond the requirements phase and permeates all the other
phases of the software development process. The existence of
design rationale can impose direct influence in the usefulness
of the design itself. Thus tools (e.g., [24]) that are able to
retrieve or generate this kind of rationale could be particularly
important during the software development process. This could
be noted when teams were asked to explain what their design
intended to express.

In our point of view, as discussed in this section, research is
already being conducted regarding all the cited automation
requirements. The current challenge is on the integration of
these independent and usually conflicting researches into an
environment that considers non-functional attributes such as
performance and usability. Moreover, an additional challenge
is to provide this environment outside a usual desktop
computer, but in the context of a ubiquitous design room. This
scenario would provide greater flexibility to designers,
allowing them to freely express their creativity, without
incurring in the problems discussed throughout this paper.

VI. CONCLUSION

In this paper we analyzed through video sessions how three
professional teams performed design. This analysis occurred in
terms of design styles and outcomes, and first consisted on the
identification of the design style of each team and the produced
outcomes. After that, we performed a quantitative and
qualitative study, comparing the completeness of the design
outcomes to infer their representational power. Finally, based

on our analysis, we established some requirements for tools
builders that would help on diminishing the design flaws
perceived in the video sessions.

In our point of view, the main contribution of this paper is
the establishment of an initial relationship among the influence
of design style on the representational power of the design
outcomes. However, additional contributions, such as a fair and
independent analysis of professional designers in action and the
suggestion of automation requirements for building design
tools, are also relevant and may foment future work.

Through our qualitative analysis of the results, the paper
also reinforced the intuitive but few practiced idea that the
design process of the internal structure of the software should
be as important as the process of HCI design, so that both
activities appear to be complementary towards the
development of software with quality. That is, software that
fully meets the requirements imposed by the problem being
addressed, called throughout the paper as domain factors, and
the users’ requirements and their needs for interaction.

In this context, one important question remains open for
research in software design: how to effectively combine into a
single design discipline techniques and tools widely used in
traditional object-oriented design with tools and techniques
used in HCI design? We see that the synergy of both practices
in a common development framework could lead to more
representative outcomes, which in turn could lead to more
innovative and effective products in their application areas.

However, it is important to emphasize that design processes
are usually driven by people with different academic and
professional background, using different methodologies (each
one with a particular level of detail) that can produce several
kinds of outcomes. We did not intend to assess which design
session was “the best one”. Additionally, rather than one
single, time-limited session, a typical software design process
can take days or even months. Thus, our analysis cannot be
generalized, but our hypothesis stated above can point out a
research direction for those who want to get involved with the
subject in discussion.

Future works include (i) experiments for examining how
different programmers would code each design outcome; this
could provide feedback on whether the design outcome was
suitable and sufficient, based on the divergences between
design and code, and how much and which additional
information is needed; (ii) executing a design inspection,
checking for imprecision, ambiguity, mistakes and so on; and
(iii) contrast professional software design and academic
software design, considering the same requirements set.

ACKNOWLEDGMENTS

Our thanks to the companies that provided their design
session videos, and to CAPES and CNPq for their financial
support.

REFERENCES

[1] T. Winograd, Bringing Design to Software, ACM Press,

1996.

[2] J. Kramer, “Is abstraction the key to computing?,”

Commun. ACM, vol. 50, 2007, pp. 36-42.

[3] M. Shaw, “Comparing architectural design styles,”

Software, IEEE, vol. 12, 1995, pp. 27-41.

[4] L. Mathiassen e J. Stage, “The principle of limited

reduction in software design,” Information Technology

& People, vol. 6, 1990, pp. 171 - 185.

[5] E. Gamma, R. Helm, R. Johnson, e J.M. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley Professional, 1994.

[6] J. Frederick P. Brooks, “No Silver Bullet Essence and

Accidents of Software Engineering,” Computer, vol. 20,

1987, pp. 10-19.

[7] R. Baeza-Yates e B. Ribeiro-Neto, Modern Information

Retrieval, Addison Wesley, 1999.

[8] G. Booch, “Object-oriented design,” Ada Lett., vol. I,

1982, pp. 64-76.

[9] R.N. Taylor e A.V.D. Hoek, “Software Design and

Architecture The once and future focus of software

engineering,” 2007 Future of Software Engineering,

IEEE Computer Society, 2007, pp. 226-243.

[10] D.A. Norman e S.W. Draper, User Centered System

Design: New Perspectives on Human-computer

Interaction, CRC, 1986.

[11] B. Myers, “Challenges of HCI design and

implementation,” interactions, vol. 1, 1994, pp. 73-83.

[12] N. Mangano, A. Baker, e A.V.D. Hoek, “Calico: a

prototype sketching tool for modeling in early design,”

Proceedings of the 2008 international workshop on

Models in software engineering, Leipzig, Germany:

ACM, 2008, pp. 63-68.

[13] G. Antoniol, G. Canfora, G. Casazza, A.D. Lucia, e E.

Merlo, “Recovering Traceability Links between Code

and Documentation,” IEEE Trans. Softw. Eng., vol. 28,

2002, pp. 970-983.

[14] L.C. Briand, Y. Labiche, e L. O'Sullivan, “Impact

Analysis and Change Management of UML Models,”

Proceedings of the International Conference on Software

Maintenance, IEEE Computer Society, 2003, p. 256.

[15] A.T.T. Ying, G.C. Murphy, R. Ng, e M.C. Chu-Carroll,

“Predicting Source Code Changes by Mining Change

History,” IEEE Trans. Softw. Eng., vol. 30, 2004, pp.

574-586.

[16] K.M. Anderson, R.N. Taylor, e J. E. James Whitehead,

“Chimera: hypertext for heterogeneous software

environments,” Proceedings of the 1994 ACM European

conference on Hypermedia technology, Edinburgh,

Scotland: ACM, 1994, pp. 94-107.

[17] T.N. Nguyen, E.V. Munson, e J.T. Boyland, “The

molhado hypertext versioning system,” Proceedings of

the fifteenth ACM conference on Hypertext and

hypermedia, Santa Cruz, CA, USA: ACM, 2004, pp.

185-194.

[18] L. Murta, H. Oliveira, C. Dantas, L.G. Lopes, e C.

Werner, “Odyssey-SCM: An integrated software

configuration management infrastructure for UML

models,” Science of Computer Programming, vol. 65,

Abr. 2007, pp. 249-274.

[19] D. Ohst, “A Fine-Grained Version and Confguration

Model in Analysis and Design,” Proceedings of the

International Conference on Software Maintenance

(ICSM'02), IEEE Computer Society, 2002, pp. 521-527.

[20] S. Wenzel, J. Koch, U. Kelter, e A. Kolb, “Evolution

analysis with animated and 3D-visualizations,” Software

Maintenance, 2009. ICSM 2009. IEEE International

Conference on, 2009, pp. 475-478.

[21] S. Eick, T. Graves, A. Karr, A. Mockus, e P. Schuster,

“Visualizing software changes,” Software Engineering,

IEEE Transactions on, vol. 28, 2002, pp. 396-412.

[22] B.E. John e D.E. Kieras, “Using GOMS for user interface

design and evaluation: which technique?,” ACM Trans.

Comput.-Hum. Interact., vol. 3, 1996, pp. 287-319.

[23] J. Lee e K. Lai, “What's in design rationale?,” Human-

Computer Interaction, vol. 6, 1991, pp. 251-280.

[24] C. Dantas, L.G.P. Murta, e C.M.L. Werner, “Mining

Change Traces from Versioned UML Repositories,”

Proceedings of the Brazilian Symposium on Software

Engineering (SBES'07), 2007, pp. 236-252.

	I. Introduction
	II. Design Sessions Classification
	A. Design Styles
	B. Design Outcomes
	C. Classification in Terms of Design Styles and Outcomes

	III. Quantitative Analysis
	A. Analysis Metrics and Data
	B. Quantitative Analysis Results

	IV. Qualitative Analysis
	V. How Tools Could Help?
	A. Automation requirements
	B. Tools suggestions

	VI. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

