
Sequential coding patterns: How to use them effectively

in code recommendation

Luiz Laerte Nunes da Silva Junior1

UFF, Instituto de Computação, Niterói, RJ, Brazil.

Troy Costa Kohwalter1,∗

UFF, Instituto de Computação, Niterói, RJ, Brazil.

Alexandre Plastino1

UFF, Instituto de Computação, Niterói, RJ, Brazil.

Leonardo Gresta Paulino Murta1

UFF, Instituto de Computação, Niterói, RJ, Brazil.

Abstract

Context: Some programming constructs frequently appear together in differ-

ent parts of the code, representing sequential coding patterns throughout the

project. These sequential coding patterns can be mined from the project reposi-

tory and, whenever the code a developer is writing coincides with the beginning

of a sequential pattern, the remainder of this pattern can be suggested to the

developer. This is equivalent to the usual Code Completion, which suggests

syntactic structures based on the line being programmed. However, instead

of providing syntactic suggestions for completing the current line, such feature

suggests code snippets containing multiple lines.

Objective: This paper contributes with an in-depth study on how code

pattern recommendation can be used effectively.

Method: We answer three research questions through a quantitative study

∗Corresponding author.
Email addresses: luiznunes@id.uff.br (Luiz Laerte Nunes da Silva Junior),

troy@ic.uff.br (Troy Costa Kohwalter, plastino@ic.uff.br (Alexandre Plastino),
leomurta@ic.uff.br (Leonardo Gresta Paulino Murta)

1Universidade Federal Fluminense.

Preprint submitted to Information and Software Technology July 27, 2021



using a robust experimental infrastructure with a corpus of five open-source

projects: (1) “In a code recommendation, how many frequent coding patterns

should be presented?”, (2) “What is the impact of filtering sequential patterns

by their confidence?”, and (3) “Does the effectiveness of the sequential coding

patterns degrade over time?”.

Results: Our study shows that it is possible to achieve correctness above

80% when using suggestions with the highest confidence values and that a

threshold confidence of 30% generally provides better outcomes. Furthermore,

it shows that frequent code pattern completion effectiveness tends to degrade

50 commits after the patterns have been mined.

Conclusion: We could observe that: (1) the top five ranked suggestions

are the ones that deliver the best results; (2) the code recommendations that

deliver the best results are the ones with the highest confidence values; and

(3) the code recommendation performance degrades as the source code evolves

because patterns become outdated.

Keywords: sequential code patterns, data mining, recommendation system,

version control system

1. Introduction

The improvement of code quality and productivity during software devel-

opment is one of the main concerns of Software Engineering [1]. For instance,

code completion, which is available in almost every Integrated Development En-

vironment (IDE) [2], is an example of a tool aimed at increasing both code

quality and productivity. It statically analyzes the source code and suggests

automatic completion of variable and method names. This potentially increases

code quality by avoiding typos and increases productivity by reducing typing

effort.

Several works aim at extending the idea of code completion to recommend

code from previously written code [3, 4, 5, 6, 7, 8, 9, 10, 11], considering that

programs are written mostly using repetitive code [12]. These works are based

2



on the idea that what was previously developed can be used to foresee, in some

degree, what will be done in the future. For instance, a call to commit or rollback

always appears after a call to begin a transaction on a database API, or a call

to close a file always appears after calls to open the file and read or write to it.

In addition to those examples based on well-known APIs, such approaches are

able to detect more complex frequent patterns, which belong to the business

domain.

The main challenge of code recommendation approaches is determining what,

among a great amount of data obtained from the past, must be suggested. One

of the most prominent ways to address this challenge is via sequential coding

patterns mining [13] over the previously developed source code. Then, when

new code is being developed, if it matches with the beginning of some of the

previously obtained patterns, a code completion suggestion is provided with the

remainder of the pattern that has not already been coded.

However, there is little knowledge about how these patterns behave and how

they could be effectively used in code completion. Thus, this work aims at con-

ducting a detailed study over the recommendation of sequential coding patterns

for code completion by answering the following research questions (RQs):

1. RQ1: In a code recommendation, how many frequent coding patterns

should be presented?

Existing approaches suggest sequential patterns to a developer in a rank-

ing. The number of patterns present in the ranking directly affects the

correctness and automation provided by the approach. On the one hand,

suggesting all patterns would certainly benefit automation but degrade

correctness. On the other hand, suggesting just the top-ranked patterns

would improve correctness but compromise automation. This RQ investi-

gates the impact of presenting only a subset of suggestions to the devel-

oper.

2. RQ2: What is the impact of filtering sequential patterns by their confi-

dence?

3



Just restricting the number of suggestions, as discussed in RQ1, may still

include suggestions with a low probability of being useful. The confidence

metric could be incorporated to prune the suggestions to be presented

to the developer. Thus, the developer can analyze those with confidence

values above a specific threshold, which represent suggestions with a high

probability of being useful, omitting the ones with low probabilities of

being relevant. This RQ investigates the impact of presenting a variable

number of suggestions based on their confidence instead of a fixed number

of suggestions.

3. RQ3: Does the effectiveness of the sequential coding patterns degrade over

time?

Our third study is targeted at examining the possibility of pattern expira-

tion. As aforementioned, suggestions are obtained through the discovery of

patterns in a repository. However, after mining the repository, developers

commit changes to the code base, and previously obtained patterns may

no longer reflect the current source code reality. Thus, this RQ focuses on

observing the influence of time passing on sequential patterns.

We used four metrics for answering the RQs. The first metric is the Au-

tomation, which maps the adoption rate of a sequential coding pattern. The

second is the Correctness, which maps the relevance of the pattern in a given

situation. The third metric is F-Measure, the harmonic mean between the

first two metrics. Finally, the fourth metric is the Applicability, which is

the percentage of situations where sequential coding patterns can be applied.

We also developed a robust experimentation infrastructure and used this infras-

tructure over five open-source project repositories to answer those three research

questions.

We could observe that the top five ranked suggestions are the ones that

deliver the best results, and it is possible to achieve correctness above 80% when

using suggestions with the highest confidence values. Furthermore, our analysis

shows that a threshold confidence of 30% generally provides better outcomes

4



and that frequent code pattern completion effectiveness tends to degrade 50

commits after the patterns have been mined, since the source code evolves and

the patterns become outdated.

This paper is organized in five sections. Section 2 describes the materials and

methods employed in this work. Section 3 presents the experimental results for

each research question. Section 4 presents the related work. Finally, Section 5

concludes this work, presenting the contributions and future work.

2. Materials and Methods

The first step needed to answer the research questions is providing of means

to evaluate a significant amount of frequent coding patterns. This way, we built

an infrastructure that can evaluate sequential coding patterns automatically.

The evaluation demands two distinct stages to be performed: (1) We need to

extract codification patterns, and then (2) we evaluate the frequent code pattern

recommendations.

Version control repositories hold the evolution history, organized in commits

and file revisions. Each commit creates a new revision for one or more files

and, by diffing two consecutive revisions, we can obtain every added line of

code. We can also check out an entire project revision, obtaining an old version

of the project source code. This structure allows us to extract the sequential

code patterns from a specific moment in the past and, after that, navigate

through the subsequent repository commits. In this navigation, each file revision

is individually evaluated, checking whether frequent code pattern suggestions

would have been useful if they were available when the developers were coding.

Therefore, in our evaluation method, for a given version control repository

R = {c1, c2, ..., cn}, where n is the amount of commits available in the reposi-

tory, the first n/2 commits are used for pattern extraction. Thus, the specific

project revision produced by these n/2 first commits is checked out, and the

pattern mining stage is applied in the source code, resulting in a set of fre-

quent code patterns that may be stored in a pattern tree. Figure 1 gives a

5



graphical representation of this tree with the following five patterns stored in

it: 〈(A)(B)〉, 〈(C)(D)(E)〉, 〈(C)(D)〉, 〈(C)(E)〉, and 〈(D)(E)〉.

Figure 1: Sequential Pattern Tree with support and confidence annotation.

Considering every tree node as the end of a sequential pattern, each node

contains the support of the pattern it represents. On the other hand, a pattern

confidence cannot be seen as a single value, as it depends on the subsequence

being queried. Given a pattern consisting of three methods, for example, the

pattern could be suggested in two distinct situations: when the developer may

have coded only the first method or may have already coded the first two meth-

ods of this pattern. In the former situation, the second and third methods of

this pattern would be suggested, whilst in the latter, only the third. In these

situations, what is more important is that both have different confidence values.

Therefore, the length of the sequential pattern determines how many confidence

values it should have.

In Figure 1, we are also able to see the aforementioned annotation of sup-

port and confidence in the tree. For instance, when observing the frequent

sequence 〈(C)(D)(E)〉, it is possible to see the confidences 40% and 70% in the

last node (deepest level), which represents method E. These confidence values

represent the confidence of 〈(C)(D)(E)〉 related to 〈(C)〉 and the confidence of

〈(C)(D)(E)〉 related to 〈(C)(D)〉, respectively.

6



In the following, we exemplify the whole process based on the tree shown in

Figure 1. Suppose a developer codes the method calls A, D, and F , in this order.

Then, we would generate the following method combinations: 〈(A)〉, 〈(D)〉,

〈(F )〉, 〈(A)(D)〉, 〈(A)(F )〉, and 〈(D)(F )〉. The combination 〈(A)(D)(F )〉 would

not even be generated because there is no pattern in the tree with more than

three method calls. This way, the maximum combination size is automatically

limited to two. These combinations would be queried in the sequential pattern

tree, ordered according to their size.

First, the method call A would be queried, and method call B would be

returned with support equal to 5% and confidence equal to 62.5%. After that,

the method call D would be queried and the method call E would be returned

with 3% of support and 66.6% of confidence. Next, after querying method call

F , no pattern would be found and the following combinations would be dis-

carded: 〈(A)(F )〉 and 〈(D)(F )〉. Then, combination 〈(A)(D)〉 would be queried

and again no pattern would be returned. Last but not least, the identified pat-

terns would be ranked according to their confidence values and suggested in the

following order: D → E, A → B.

This strategy is based on the holdout method [14], where the data used into

the evaluation is divided in two mutually exclusive subsets, the training subset,

and the test subset. In our case, we have decided to split in half the project

history. The first half is used to extract the patterns (training subset) and the

second to evaluate the obtained patterns (test subset).

After that, the code in the last n/2 commits are used to assess the mined

patterns. Each particular commit, ci, is composed by file revisions, ci =

{f1, f2, ..., fp}, where p is the number of files modified (added, deleted or up-

dated) in the commit. Due to the need for static analysis over the source code,

we restricted our assessment to Java file revisions, and also the ones that con-

tains method bodies with method calls. Each Java file revision, fj , is composed

by method bodies, fj = {m1,m2, ...,mq}, where q is the number of method

bodies present in the Java file. Finally, each method body, mk, is composed by

method calls, mk = {mc1,mc2, ...,mcr}, where r is the number of method calls

7



present in the method body.

Therefore, the Java files must include at least one method body. This method

body is eligible for evaluation if it contains at least two method calls, one for

querying the set of frequent code patterns and the other for comparing with the

query result. Furthermore, we decided not to evaluate modified method bodies,

restricting the process to new method bodies. This choice was taken provided

that we are trying to infer the code recommendation influence when a developer

is coding an entirely new piece of code. Therefore, the method must be new

and contain at least two method calls.

Our evaluation considers each method body as an opportunity to provide

recommendations in the second stage. Thus, each method body is individually

evaluated and, after that, the results are combined. For each method body, we

check whether each method call mcm, 2 < m ≤ r, could be foreseen through a

frequent code pattern recommendation. To do so, we query for patterns using

the ordered arrangements of {mc1, ...,mcm−1} and the query result is compared

against the remainder of the method calls, {mcm, ...,mcr}. The size of the

arrangements was limited to five to run the experiments in a timely manner.

Besides, the first method call, mc1, is not evaluated, provided that there is

no previous method call to be used in a query. The arithmetic mean of the

results obtained from each method body produces the frequent code pattern

recommendation performance assessment.

2.1. Project Corpus

The projects used to answer the research question were chosen according to

some criteria. They should have Java as their primary programming language,

as our analysis is language-dependent and Java is one of the most popular pro-

gramming language2. Moreover, they should have at least 1,000 commits, aim-

ing at avoiding toy projects and guaranteeing a significant amount of commits

for evaluation.

2https://www.tiobe.com/tiobe-index/

8



Also, the projects should use Git as their version control system, as the data

extraction phase of our analyses depends on the characteristics of the version

control system. We have chosen Git, given its popularity. According to the Stack

Overflow Developer Survey Results of 20183, which received answers from more

than 100 thousand developers, Git is the most used VCS, summing up 87.2%

of the answers.

We have selected five widely known open-source projects in the Java devel-

opment community. All projects were active and under constant evolution (see

table 1). The projects are:

• Commons IO4. A library of utilities aimed at helping developers coding

input/output functionalities. It is developed by The Apache Software

Foundation5.

• Guava6. A group of core Java libraries involving collections, caching, prim-

itives support, concurrency libraries, common annotations, string process-

ing, I/O, and so forth. It is developed by Google and used in their Java-

based projects.

• JUnit7. A framework to support writing automated tests in Java. It is

the standard Java implementation of the xUnit architecture for unit test

frameworks.

• RxJava8. A Java implementation of Reactive Extensions Library9, an API

developed to provide an easy way to deal with asynchronous programming

through the Observer Design Pattern [15].

• Spring Security10. An authentication and authorization framework to

3https://insights.stackoverflow.com/survey/2018
4http://commons.apache.org/proper/commons-io/
5http://www.apache.org
6http://code.google.com/p/guava-libraries/
7http://junit.org/
8http://github.com/ReactiveX/RxJava
9http://reactivex.io/

10http://projects.spring.io/spring-security/

9



Table 1: Selected Projects.

Projects Number of Method Bodies Number of Commits Creation Date

Commons IO 1,104 1,717 2002-01-25

Guava 6,055 3,024 2009-06-18

JUnit 1,626 1,951 2000-12-03

RxJava 1,494 3,744 2012-03-18

Spring Security 3,260 5,640 2004-03-16

secure Spring-based11 web applications.

2.2. Independent and Dependent Variables

Data mining processes are characterized by discovering new and useful knowl-

edge, in terms of rules and patterns, from large amounts of data. Sequential

patterns consist of ordered sequences of events that appear with significant fre-

quency in a dataset. A concept called support is used to evaluate the relevance

of a sequential pattern. Given a dataset S, consisting of a set of sequences, the

support of a sequence α, represented by Sup(α), is the number of sequences in

S which are super sequences of α. Thus, support is an important metric, as

it indicates if a sequence of method calls that repeatedly appears in the source

code can be considered a pattern.

We also use another metric, called confidence. This metric is originated

from the association rules field and can be adapted in the context of sequential

patterns mining as follows. Considering α and β as two sequences, where α is

a subsequence of β, the confidence of β in relation with α, Conf (α → β), is

the proportion of sequences in S that contain β among all sequences in S that

contain α: Conf (α → β) = Sup(β)/Sup(α).

This concept can be exemplified as follows. Assuming a sequential pat-

tern β consisting of 〈(“Star Wars”)(“The Empire Strikes Back”)(“Return of

11http://spring.io/

10



the Jedi”)〉, whose support is 28%, and another sequential pattern α consisting

of 〈(“Star Wars”) (“The Empire Strikes Back”)〉, whose support is 35%, then

Conf (α → β) = 80%. In this case, we can state that ‘with 80% confidence,

customers that rent “Star Wars” and “Empire Strikes Back”, in this order, also

rent “Return of the Jedi” afterwards.

In the context of code recommendation, given a sequential pattern of method

calls 〈(A)(B)(C)(D)〉, whose support is 21% and another sequential pattern of

method calls 〈(A)(B)〉, whose support is 28%, we could state that: “Developers

that invoke methods A and B, in this order, also invoke, with 75% confidence,

methods C and D.” When the suggestions for method calls are provided to

the developer, the confidence indicates which suggestions should be presented

first. Thus, even if many patterns are returned from a query, the developer can

analyze only the returned ones with the largest confidence values.

Finally, we only considered method bodies for which at least one suggestion

was provided. These are classified as the evaluated methods, while the method

bodies containing at least two method calls are the valid methods. This way, not

all valid methods were actually evaluated, only the evaluated methods were con-

sidered in the results. We made this decision because in some situations where

no suggestions were provided, the code recommendation was neither helping nor

disturbing the developer with useless suggestions. Thus, it would be meaningless

to penalize the Automation analysis with the accounting of these situations.

We defined four dependent variables that were used to answer our research

questions, aiming at evaluating code recommendation performance in differ-

ent scenarios: Automation, Correctness, F-Measure, and Applicability.

The first two metrics respectively verify whether the recommendations could

be foreseen and whether the suggestions are relevant. In addition, F-Measure

represents a compromise between them, where high values of F-Measure are

obtained only when both Automation and Correctness are also high. The F-

Measure is defined in Formula 1. The fourth metric, Applicability, is the reason

between the evaluated methods and the valid methods.

11



F −Measure = 2×
AutomationPerc× Correctness

AutomationPerc+ Correctness
(1)

To exemplify the metrics evaluation process, consider the sample pattern

tree in Figure 1. Suppose the evaluation of a single method body composed of

five method calls: 〈(A), (C), (D), (E), (F )〉. The metric calculation is made as

follows:

1. For each method call, a query is performed with all methods already coded:

Considering the method calls being evaluated, the following requests are

made, in this order:

• Search Patterns(root, 〈(A)〉);

• Search Patterns(root, 〈(A), (C)〉);

• Search Patterns(root, 〈(A), (C), (D)〉);

• Search Patterns(root, 〈(A), (C), (D), (E)〉);

As presented before, the variable ‘root’ represents the pattern tree root

node.

2. For each query response, the suggested method calls are evaluated:

Taking the first query, Search Patterns(root, 〈(A)〉), we receive 〈(B)〉 as

response. Each method call not already coded is then evaluated, checking

if they could be foreseen with the received suggestions.

As these methods are {(C), (D), (E)}, the suggested method 〈(B)〉 is

tagged as useless.

3. For each method call being evaluated, we check whether it would have

been coded automatically through a suggestion:

Provided that the first query was not useful, the evaluation process ad-

vances, and method call (C) is tagged as not automated.

The second query, Search Patterns(root, 〈(A), (C)〉), is performed and

we receive {(D), (E), (D,E)} as suggestions, sorted by their confidence

values. In this case, the method calls 〈(D)〉 and 〈(E)〉 are suggested indi-

vidually. Moreover, as the method calls (D) and (E) are commonly used

together, it also suggests 〈(D,E)〉, which means (D) followed by (E).

12



It is important to notice that 〈(B)〉 would also be returned, provided that

the tree has the pattern 〈(A), (B)〉. However, as we have already evaluated

this suggestion, we have customized it to provide only new patterns in

the evaluation process. This customization avoids the reevaluation of an

already evaluated pattern.

Another important aspect is that we evaluate each suggested method call

individually instead of the suggestions as a whole. For example, suppose

a suggestion has three method calls, and two of them are useful. In that

case, we mark these as useful and the third one as useless (not the whole

suggestion as useful or useless), making the evaluation process as fair and

precise as possible.

This way, as the coded method calls (D) and (E) were foreseen, they are

tagged as automated. In the same way, the suggested methods 〈(D)〉 and

〈(E)〉 are tagged as useful.

4. The next executed query is Search Patterns(root, 〈(A), (C), (D)〉). This

query does not suggest any new pattern, as method (E) was already au-

tomated.

5. The last query is Search Patterns(root, 〈(A), (C), (D), (E)〉). As method

(E) is not followed by any additional method call in the pattern tree, there

is no new pattern to be suggested. The method (F ) is then tagged as not

automated, and the evaluation process is concluded.

At this moment, it is possible to summarize the evaluation result and cal-

culate the metrics values. The method calls evaluation is presented in Table 2,

where the last line shows an Automation Percentage of 50%. The first method

call, (A), is not considered, as it would necessarily be hand-coded to motivate

to run the first query.

The suggestions evaluation is presented in Table 3, where the last line shows

a Correctness of 66,67%. After that, the F-Measure, defined in Formula 1, is

calculated, resulting in a 57,16% value.

We used those dependent variables and the independent variables described

13



Table 2: Automation Percentage calculation

Method Call Automated

A N/A

C No

D Yes

E Yes

F No

Automation Percentage 50%

Table 3: Correctness calculation

Suggested Method Useful

B No

D Yes

E Yes

Correctness 66.67%

in Table 4 to answer the proposed research questions, along with the treatments

applied in the independent variables.

3. Results and Discussion

Sections 3.1, 3.2, and 3.3 present the experimental results for the afore-

mentioned research questions. As the experiments12 were executed over five

open-source projects, we first present the results for each open-source project

individually and then analyze the results as a whole.

12Experiment data available at https://gems-uff.github.io/vcc/.

14



Table 4: Independent Variables.

RQ Independent Variables Treatments

RQ1 Amount of patterns Variation of the amount of patterns from

1 to 20.

RQ2 Confidence threshold Variation of the confidence threshold

from 0% to 100% with increments of

10%.

RQ3 Number of commits Variation of the number of commits us-

ing a sliding window of 50 commits with

increments of 5 commits.

3.1. RQ1: In a code recommendation, how many frequent coding patterns should

be presented?

This first study analyzes if we can define a number of suggestions that should

be presented to developers. For each project, the code recommendation perfor-

mance was compared, varying the amount of provided suggestions from 1 to

20.

Only the first 728 valid methods of the revisions selected for evaluation were

considered to equalize the amount of data evaluated in each open-source project.

This number was defined considering that the JUnit project, the one with the

lowest amount of valid methods available for evaluation, contains exactly 728

valid methods.

Even though methods are the experimental objects of this evaluation, com-

mits are the elements sequentially processed from the repository. As a commit

can have many valid methods, some methods created in the same commit will

be evaluated while others will be ignored when the aforementioned methods

limit is reached. Since there is no temporal relationship between the classes and

methods modified in a single commit, it is not possible to properly select these

methods following a temporal criterion. Aiming at guaranteeing the experiment

reproducibility, we needed to define a deterministic criterion to select the meth-

15



Table 5: Evaluation Statistics

Project Commits Valid Methods Eval. Methods Applicability Method Calls

Commons IO 170 728 425 58.4% 3,504

Guava 69 728 274 37.6% 1,450

JUnit 180 728 414 56.9% 2,083

RxJava 140 728 347 47.7% 2,173

Spring Security 101 728 403 55.4% 3,005

ods from the last evaluated commit, which led us to implement this selection

through the lexicographic order of the fully qualified method names.

Some statistics about this study are presented in Table 5. The first column

shows the project names. The second column presents the total number of valid

commits evaluated for each project. The third column gives the number of valid

methods, while the fourth, the number of evaluated methods, i.e., the number of

method bodies for which at least one suggestion was provided. The fifth column

shows the Applicability, the percentage of valid methods that were evaluated.

Finally, the sixth column presents the total number of evaluated method calls

(i.e., the method calls coded inside the evaluated methods) that were verified if

the code recommendation could be automated.

Figure 2 also shows the length of the recommended sequence for each project.

As we can see, sequences with length one are predominant. Meanwhile, Figure 3

shows the length of all the detected patterns in each project, which includes the

query length plus the recommendation sequence length. We can see that the

pattern length 2 is predominant and length 3 is closely behind in some cases.

The results for Commons IO are presented in Figure 4. The curve shows

that code recommendations automate more than 25% of the method calls coded

in the evaluated method bodies. We can also observe a steep rise in Automa-

tion (from 17% to 25%, approximately) when the suggestion threshold varies

between 1 and 10. However, when more than 10 suggestions are analyzed, the

curve stabilizes, indicating that considering more than 10 suggestions may be

16



Figure 2: Recommended sequence length for RQ1 data

Figure 3: Patterns length for RQ1 data

17



Figure 4: Automation, Correctness and F-Measure results for Commons IO

pointless, at least for this project. As we can also see, the correctness stabilizes

after 8 suggestions and becomes steady after 14 suggestions. Finally, the best

performance in terms of F-Measure is obtained when less than 5 suggestions

are considered, with the best absolute result obtained when 3 suggestions are

provided.

We obtained equivalent results for Guava, as illustrated in Figure 5, with the

Automation values also reaching above 25%. The curve behavior is also similar,

with stabilization after 8 suggestions. Regarding the Correctness curve, it is

possible to notice that it presents a continuous decrease, as expected. Although,

its worst result is still close to 20%, when up to 20 suggestions are analyzed.

In the F-Measure curve, we can see that the maximum F-Measure values are

obtained with 4 and 7 suggestions. Moreover, the results achieved between 3

and 9 suggestions are considerably better than the others.

The JUnit evaluation, illustrated in Figure 6, shows that the Automation

and the Correctness curve behaviors are similar to the ones obtained in the

previously presented projects. However, by analyzing the F-Measure curve, we

observe that the results are more stable in this project, with only a smooth

decrease when more than 15 suggestions are evaluated. Although, there are two

18



Figure 5: Automation, Correctness and F-Measure results for Guava

peaks when four and six results are provided. It is also worth mentioning that

the Automation values were around 30%, with Correctness superior to 20% in

almost all scenarios. This means that about one-third of the method calls would

have been automated if 10 or more suggestions had been considered.

The results for the RxJava project are illustrated in Figure 7 and are very

close to the ones presented by Commons IO and Guava projects. As expected,

the F-Measure is also equivalent, presenting a continuous decrease. The best

results are accomplished when two, three, or four suggestions are analyzed.

Finally, by analyzing the Spring Security results presented in Figure 8, we

can observe an analogous performance when compared to the JUnit project.

The Automation metric maintains a smooth rise, while the Correctness metric

tends to stabilize. However, the F-Measure metric follows the declining tendency

shown in other projects, however, in a softer way, with peaks in 3 and 5.

As expected, we observed a continuous increase in Automation in all projects

when more suggestions are taken into consideration. At the same time, the

Correctness decreases as the number of suggestions analyzed get bigger. The

F-Measure curves are essential to analyze whether the Automation increase

compensates for the Correctness decrease or not. Table 6 presents, for each

19



Figure 6: Automation, Correctness and F-Measure results for JUnit

Figure 7: Automation, Correctness and F-Measure results for RxJava

20



Figure 8: Automation, Correctness and F-Measure results for Spring Security

Table 6: F-Measure Results

Project Best F-Measure Suggested Amount

Commons IO 24.2% 3

Guava 26.9% 4

JUnit 26.8% 4

RxJava 26.2% 2

Spring Security 26.1% 5

project, the number of suggestions that delivers the highest F-Measure value.

The first column shows the project names. The second column presents the

highest F-Measure obtained for the project. Finally, the third column gives the

number of suggestions evaluated that delivered this F-Measure result.

In Commons IO, Guava, and RxJava, it was possible to notice a significant

decrease in F-Measure as more suggestions were analyzed. It indicates that a

gain in Automation does not compensate for the Correctness decrease caused

by presenting suggestions with lower confidence values. In JUnit and Spring

Security, the F-Measure performance also decays when more suggestions are

analyzed. However, its decreasing rate is much smoother, which indicates that

21



the analysis of more suggestions may be helpful in some situations.

RQ1. In a code recommendation, how many frequent coding pat-

terns should be presented?

Answer: The obtained results point out that the suggestions ranked in the

first five positions are the ones that provide the best overall performance.

Around 25% of method calls are automatically coded when these sugges-

tions are considered.

Implications: Developers should seriously consider these suggestions since

they present Correctness superior to 25% in four out of the five evaluated

projects. Nonetheless, since the suggestions ranked after the fifth position

can also help developers, we believe that the code recommendation sug-

gestions should be paginated. This strategy would highlight the best sug-

gestions while still allowing developers to navigate through the remaining

suggestions on demand.

3.2. RQ2: What is the impact of filtering suggestions by their confidence instead

of only ranking them?

This RQ aims at evaluating suggestions by confidence, using different thresh-

old values, and analyzing the impact of these thresholds on the results. This

way, we investigate if filtering suggestions by confidence improves the quality

of code recommendation results. We have defined eleven confidence thresholds,

from 0% to 100% confidence, with an interval of 10% between each analyzed

threshold. It is important to notice that each threshold is a minimum confidence

value. Thus, when the threshold is 0%, all suggestions are evaluated. When the

threshold is 10%, only the suggestions with confidence greater or equal to 10%

are evaluated, and so on. When the threshold is equal to 100%, only suggestions

with exactly 100% confidence are evaluated.

Figure 9 also shows the length of the recommended sequence for each project,

without filtering by thresholds. As we can see, sequences with length one are

22



Figure 9: Recommended sequence length for RQ2 data

still predominant. Meanwhile, Figure 10 shows the length of all the detected

patterns in each project, which includes the query length plus the recommen-

dation sequence length. There is no longer a predominant length in this study

and the length varies from project to project due to different coding patterns.

Nevertheless, the recommendation sequence length of 1 is still predominant, as

shown in Figure 9.

In addition, this study also analyzes the impact in the Applicability metric

of filtering out the suggestion. When we filter out suggestions according to a

threshold, we may have no suggestions, as there may not remain any suggestions

with confidence that is superior to the threshold. Therefore, filtering suggestions

may reduce the number of evaluated methods and impact the Applicability.

The results are presented using scatter plot charts in order to also show

the Applicability metric. Each scatter plot crosses two dependent variables:

the Applicability and one of the other metrics (Automation, Correctness, or F-

Measure). Also, each chart presents 11 samples, and each one is an independent

execution of the experiment for a different confidence threshold.

Following the same order from RQ1, we first evaluated Commons IO with

the results presented by Figure 11. First of all, choosing a confidence threshold

23



Figure 10: Patterns length for RQ2 data

superior to 60% reduces the Applicability to less than half of the total. On

the other hand, choosing a confidence threshold inferior to 30% does not repre-

sent a notable increase in the number of evaluated methods. Nonetheless, the

Automation increases when the threshold is inferior to 30%, while it remains

almost stable for the other confidence values.

We can observe an outlier in this chart: the 70% confidence threshold. It is

the only point where there is a noteworthy reduction in Automation when the

confidence threshold is reduced. Note that when the threshold reduces, more

method bodies are evaluated, increasing the Applicability. This kind of out-

lier may occur when the Automation obtained with the new evaluated method

bodies is worse than the one obtained in the method bodies that were already

being evaluated (with the threshold set to 80%), which may reduce the over-

all Automation. Moreover, there is a significant variation in the Correctness

results, from a value slightly above 10% to almost 60%, when the confidence

values varies between 0% and 100%. It is possible to observe that, as the con-

fidence threshold becomes more restrictive, the returned Correctness suffers a

substantial positive impact.

We obtain the F-Measure values by contrasting the steep Correctness in-

24



Figure 11: Automation, Correctness, and F-Measure results for Commons IO

creasing with the Automation. Apart from the result when the confidence

threshold is 70%, caused by the aforementioned outlier, the other results be-

tween 60% and 100% confidence threshold are almost stable. While the high-

est F-Measure is obtained when the confidence threshold is 100%, many more

methods are evaluated when the threshold is 60%. When looking at the results

between 50% and 0% confidence, the threshold of 30% confidence represents

an interesting value. Its F-Measure value is higher than those obtained with

smaller confidence thresholds, while the amount of evaluated methods is al-

most the same. At the same time, many more methods are evaluated when

the threshold is 30% than when it is 40% or 50%, whereas the F-Measure result

remains stable. In other words, the threshold of 30% dominates almost all other

thresholds in the range from 0% to 50%.

In the Guava project, as illustrated by Figure 12, the Automation behav-

ior is considerably different when compared to the one observed in Commons

IO. There is a continuous decrease in the Automation values as the confidence

threshold gets more restrictive. However, the Automation decrease is reflected

by a steep Correctness increase. Although, the most important information

25



Figure 12: Automation, Correctness, and F-Measure results for Guava

in this chart is the obtained Correctness values, which reach more than 80%.

This indicates that if a developer had only received suggestions with confidence

values above 80%, approximately eight in ten suggested method calls would be

correct. This behavior shows that filtering suggestions by confidence represent

a powerful tool to customize the quality of the provided suggestions. Indeed,

the increase in the Correctness is also opposed by an expected reduction in the

number of evaluated methods.

We can see that the highest F-Measure value is obtained when the confidence

threshold is 30%. This threshold also provides a high amount of evaluated

methods. Using 30% as the threshold in confidence would decrease automation

by 32%, decrease Applicability by 31%, but increase Correctness by 260% if

compared to not filtering by confidence (0% as the threshold).

For JUnit, as illustrated by Figure 13, there is a smooth decrease in the

Automation as the confidence threshold increases. This decrease is more intense

when the evaluated thresholds vary between 0% and 20% confidence. Moreover,

even with a threshold of 100%, more than 100 method bodies were evaluated in

this project. It is also worth mentioning that almost 40% of Automation, the

26



Figure 13: Automation, Correctness, and F-Measure results for JUnit

biggest value so far, was obtained when the threshold was set to 0%.

The middle graphic from Figure 13 shows that we have obtained Correctness

values around 80% when the confidence threshold is set to 80% or more. When

the threshold is set to values lower than 80%, there is a continuous decrease

in the Correctness results. Meanwhile, the highest F-Measure values are found

when the threshold is between 60% and 80%. Also, if the threshold is 40%, the

F-Measure is slightly inferior, but the Applicability increases, indicating that

this is also an interesting value. When the threshold is less than or equal to 30%,

the F-Measure results are significantly lower. However, much more methods are

evaluated in this condition.

In RxJava, as illustrated by Figure 14, the automation decreases when the

confidence threshold increases, as expected. We can observe that the continuous

Correctness increase when the confidence threshold becomes more restrictive. In

this project, the Correctness also reaches values close to 80%, but only when the

confidence threshold is 90% or 100%. The highest F-Measure value is achieved

when the confidence threshold is set to 30%.

For Spring Security, Figure 15 shows that all confidence thresholds have more

27



Figure 14: Automation, Correctness, and F-Measure results for RxJava

than 100 method bodies evaluated, except for 100%. On the other hand, we

can observe a Correctness of 90% when the threshold is set to 100%, the highest

value in the five evaluated projects. When the threshold is set to 90%, the

Correctness still stays above 80%. Between the thresholds 0% and 80%, there is

a continuous Correctness increase as the threshold also increases, as expected.

The highest F-Measure values are obtained when the confidence threshold is set

to 60%, where about 250 method bodies are evaluated. The threshold of 30%

is also an interesting value, provided the F-Measure reduction is small, while

there is a substantial Applicability increase.

Therefore, differently from our first research question, when the Applica-

bility had a single value for each project, in this evaluation, it decreases as

the confidence threshold increases. This way, the configuration of a confidence

threshold must take this Applicability reduction into consideration.

Table 7 presents, for each project, the confidence threshold that delivers

the highest F-Measure value and the obtained Applicability. The first column

shows the project names. The second column presents the highest F-Measure

obtained for each project. The third column shows the confidence threshold

28



Figure 15: Automation, Correctness, and F-Measure results for Spring Security

that provided this highest F-Measure. Finally, the fourth column displays the

Applicability obtained with the used confidence threshold.

The results presented in Table 7 represent an improvement in comparison to

the ones obtained with the suggestion without filtering out by confidence. All

the highest F-Measure values obtained when filtering by confidence are superior

to the highest values obtained when filtering by suggestions amount, which can

be observed when contrasting the results presented in Table 7 with Table 6.

Table 7: Highest F-Measure obtained and the respective Confidence and Applicability values

Project Highest F-Measure Confidence Threshold Applicability

Commons IO 27.5% 100.0% 10.5%

Guava 27.0% 30.0% 26.1%

JUnit 34.6% 70.0% 25.8%

RxJava 30.2% 30.0% 34.5%

Spring Security 34.1% 60.0% 33.4%

29



However, there are two drawbacks in filtering suggestions by confidence:

the Applicability reduction and the divergent results obtained for each project.

While filtering only by suggestion amount provides all the best results between

two and five suggestions, the best results were obtained with the confidence

filter with 30%, 60%, 70%, and 100%. This divergence makes it hard to claim

an ideal confidence threshold to be applied in other projects.

RQ2. What is the impact of filtering suggestions by their confi-

dence instead of only ranking them?

Answer: Our initial conclusion is that it seems to be worth filtering out

the suggestions by confidence, although the appropriate threshold varies

according to the project where code recommendation is being used. How-

ever, the overall results indicate that applying a threshold confidence of

30% provides better outcomes than when no filter is applied, i.e., when

the threshold is 0%, making 30% a conservative value that can be initially

applied to every project and tuned subsequently.

Implications: Developers should consider filtering through confidence to

select only the correct suggestions. The most precise results achieve Cor-

rectness values around 80% for all evaluated projects, except for Commons

IO. This observation indicates that code recommendation tools could offer

developers customization, where they would only receive suggestions with a

high probability of being useful. However, if the developers want to receive

a larger quantity of suggestions, they could reduce the confidence threshold

and trust only in the pagination offered by the confidence ranking. There-

fore, combining confidence filtering with the pagination idea mentioned in

RQ1 provides a promising way to improve the user experience of developers

that adopt code recommendation tools.

30



3.3. RQ3: Does the effectiveness of the sequential coding patterns degrade over

time?

In the two previous studies, we assessed code recommendation performance

in 728 method bodies. In this case, the source code was evolving while the

patterns were not being updated. The goal of this study is the measurement

of a possible performance loss caused by outdated patterns. This measurement

allows us to investigate when a new code recommendation mining stage should

be executed, updating the patterns.

In this study, we do not evaluate code recommendation over each of 728

methods as we did before. The commits were filtered, selecting only the valid

commits, which have at least one new method body added and have at least two

method calls. After that, the code recommendation was evaluated in commit

windows, where each window was composed of 50 valid commits. The amount

of windows varies in each project, as in this study. we evaluate the entire project

history.

The commit windows are not mutually exclusive to provide smoother charts.

The windows intersect, advancing five commits in each window. This way, our

first commit window contains commits between the 1st and the 50th commit;

the second commit window contains commits between the 6th and the 56th

commit; the third commit window contains commits between the 11th and the

61st; and so on.

Moreover, this study is not intended to oppose Automation and Correctness,

as in the previous two studies. We wanted to discover an ideal configuration

value that would balance these metrics. Actually, Automation and Correct-

ness tend to be influenced similarly by the source code evolution. Thus, this

study only presents the Automation and the Correctness without the F-Measure

calculation.

Table 8 presents the characterization of the projects in this study. The first

column shows the project names. The second column presents the total number

of valid commits evaluated for each project. The third column gives us the

number of valid methods, while the fourth, the number of evaluated methods,

31



Table 8: Evaluation Statistics

Project Commits Valid Methods Eval. Methods Applicability

Commons IO 185 773 453 58.6%

Guava 257 5,905 1,334 22.6%

JUnit 181 728 414 56.9%

RxJava 167 5,174 2,897 56.0%

Spring Security 649 3,677 1,784 48.5%

Figure 16: Automation and Correctness results for Commons IO

i.e., valid methods for which at least one code recommendation suggestion was

provided. Finally, the fifth column shows the Applicability, i.e., the proportion

between the evaluated methods and the valid methods.

In Commons IO, we evaluated 185 commits over 74 months. During this

period, 1,197 method bodies were created, and 774 were modified. Our first

evaluated metric is Automation, and the second is Correctness, presented in

Figure 16. In this study, the horizontal axis represents the previously explained

commit windows. The vertical axis represents the Automation for the first chart

and the Correctness for the second chart.

The first chart shows an Automation performance loss as more commits are

evaluated. This is the expected behavior since the source code is being changed

in relation to the code used to extract the patterns. These changes could be

the inclusion of new methods bodies, refactorings that changed method names,

or even the simple inclusion or deletion of method calls in already existing

32



Figure 17: Automation and Correctness results for Guava

methods. These modifications could create new patterns, which are not being

considered when the code recommendation pattern querying is being executed,

impacting the Automation. The effective performance reduction started from

the 61th commit, which would justify the re-execution of the code recommenda-

tion pattern mining stage at this moment, updating the patterns. The overall

Correctness also reduces, but at a lower rate. This lower rate can be explained

by the fact that, while the aforementioned code modifications may degrade some

patterns, other patterns are still useful, provided that the code from where these

patterns were extracted has not suffered changes that impacted the patterns.

In Guava, we evaluated 257 commits over 25 months. During this period,

13,031 method bodies were created, and 2,608 were modified. Figure 17 shows

the Automation and Correctness values. These curves show very different per-

formance than the obtained in the previously evaluated project, with some unex-

pected behaviors. In some situations, refactorings that include, change, remove,

move or even copy a great amount of code in few commits may impact the eval-

uated metrics, positively or negatively. We looked individually at the commits

evaluated in this study to explain these situations.

The first unexpected behavior is the Automation increases between the 1st

and the 125th commits. In this case, a refactoring was made in the 47th commit,

where several methods were renamed. These modifications impacted the per-

formance of all the commit windows between 1-50 and 46-95. This happened

because renamed methods are considered as new methods in Git, inserting a

huge amount of method calls in a single commit. This is an artificial Automa-

33



tion result, provided the method calls already existed. However, we could not

eliminate these situations from the evaluation. From the commit window 51-100

on, this 47th commit no longer impacted the results, and the Automation was

raised.

The second unexpected behavior is the abrupt decrease in commit window

91-140. This result was caused by the inclusion of a great amount of unit test

classes in a single commit. Apparently, this code was migrated from another

repository, and, as it was not closely related to the code used in the code rec-

ommendation pattern mining stage, it caused a significant performance loss in

the Automation. Finally, in the last analyzed commit windows, there were also

some refactorings that renamed methods. However, in this situation, the ef-

fect was positive, increasing the Automation value. As previously mentioned,

refactorings insert some noise in the evaluation, provided it is a sudden and

artificial insertion of method calls. It is important to observe that this noise can

be positive or negative, it all depends on whether the impacted method calls

take part in codification patterns or not. If they take part, the effect is posi-

tive. Otherwise, the effect is negative. In the second chart from Figure 17, it is

possible to observe a similar performance when compared to the Automation.

The refactoring that affected the first commit windows did not reflect on the

Correctness, but the other unexpected behaviors can be observed in the chart.

In JUnit, we evaluated 181 commits over 35 months. During this period,

1,403 method bodies were created, and 520 were modified. Figure 18 shows

the Automation and Correctness values. In the first curve, despite having a

period with a lower Automation between the windows 61-110 and 101-150, the

Automation values are almost stable, varying between 25% and 30%. JUnit

Correctness is also stable. There is only one single peak in commit window 46-

95. This stability, presented in both metrics, indicates that, in some projects,

the patterns can remain valid for a longer period of commits than in others.

What can also be responsible for this behavior is that the evaluation period is

not very long, comprising only 35 months, different from what we observed in

Commons IO, where the evaluation comprised 74 months.

34



Figure 18: Automation and Correctness results for JUnit

Figure 19: Automation and Correctness results for RxJava

In RxJava, we evaluated 167 commits over 10 months. During this period,

8,860 method bodies were created, and 1,197 were modified. Figure 19 shows the

Automation and Correctness values. The first curve shows an intense decrease

in the code recommendation performance as the patterns become outdated.

We believe that this intense performance loss may be credited to the intense

insertion of new code in this project. The evaluation period comprised just 10

months, although 8,860 new methods were added during this short period of

time.

When we look at the Correctness values, the behavior is analogous. However,

in the commit window 96-145, two significant refactorings were made, impacting

more than 4,000 method bodies. The first refactoring renamed 30 classes, and

the second renamed two packages, affecting almost 400 classes. These refactor-

ings created a side effect, where these classes were considered as new classes,

with new methods bodies. Thus, the methods were selected for evaluation, ar-

tificially impacting the Correctness. It is important to notice that the impact

35



Figure 20: Automation and Correctness results for Spring Security

of this refactoring was so big that the curve became constant from the commit

window 96-145 onward.

In Spring Security, we evaluated 649 commits over 76 months. During this

period, 6,989 method bodies were created, and 3,026 were modified. The Spring

Security project delivered the most relevant results of this study, as illustrated in

Figure 20. Its repository provided more than 600 valid commits, where a great

number of methods were added, allowing us to see the code recommendation

performance variation in the long term. The chart shows a continuous trend of

Automation decrease. The initial performance is around 30%, while at the end

of the analysis, the performance varies around 5% to 10%. Another important

observation to be made is that the curve is not monotonically decreasing. There

are plenty of intermediary peaks where the performance temporarily increases.

However, with a large number of commits being evaluated, it is possible to see

that the decreasing trend is maintained.

This behavior endorses the analysis made for the previously presented projects.

If we concentrate the analysis on a smaller amount of commits, we may perceive

that the Automation remains stable or even increases. Although, this is likely

to be only a local result, probably influenced by refactorings that included or

modified a great amount of code in few commits.

As in the previously evaluated projects, we can see that the Spring Security

Correctness tends to be more stable than the Automation. However, despite

the intermediary peaks, there is also a clear declining trend in Correctness,

especially after the commit window 281-330. Table 9 presents the initial and

36



Table 9: Automation Historical Variation

Project Initial Automation Final Automation

Commons IO 28.8% 13.0%

Guava 22.8% 31.6%

JUnit 29.2% 31.4%

RxJava 32.1% 7.5%

Spring Security 29.0% 7.8%

the final Automation value for each project. While the projects Commons IO,

RxJava, and Spring Security presented a substantial Automation decrease, we

observed an overall stabilization in projects Guava and JUnit. Guava, in fact,

presented an increase. We also observed that the amount of added methods

and the length of time might also influence the results beyond the number

of commits. With the obtained results, we could observe the overall declining

trend and that the intermediary abrupt ups and downs do not change this global

declining trend.

RQ3. Does the effectiveness of the sequential coding patterns

degrade over time?

Answer: The effective performance reduction starts after the 50th com-

mit, justifying the re-execution of the code recommendation pattern min-

ing stage at this moment, updating the patterns. The overall Correctness

also tends to reduce after the 51th commit, but at a slower rate due to still

having somewhat useful patterns.

Implications: We can state that an outdated pattern can have a major

influence over code recommendation performance. It is important to define

a policy to update the code recommendation patterns periodically, guar-

anteeing that the patterns reflect the code of the project being developed.

Refactorings have a great influence over code recommendation results and

37



should considered when a pattern update policy is being defined. Thus, it

is important to re-execute the code recommendation pattern mining stage

after a major refactoring is made.

3.4. Threats to Validity

Despite the effort made to provide a consistent evaluation, we have identified

some threats to validity in the experiments. This section analyzes these threats

from the perspective of the four types of validity: internal, construct, external,

and conclusion.

First of all, code recommendation demands that developers specify a pattern

support prior to the obtainment of the codification patterns. This configura-

tion varies from project to project, and we could not find in the literature an

appropriate formula to calculate it in advance, according to the project’s char-

acteristics. Hence, we needed to define the projects’ support empirically, tuning

it manually when necessary. This manual configuration impacts the internal

validity, and to reduce this threat, we defined the closest possible values for all

projects. Moreover, the impact on code recommendation results caused by the

refactorings made in the source code of the evaluated open-source projects also

affected the internal validity. These refactorings could not be removed from

the evaluated commits, as Version Control Systems do not atomically identify

renamings, considering these actions as deletions followed by additions.

We identified two threats regarding construction validity. The first is the

possibility of a mistake with the decision of mapping productivity and qual-

ity with the metrics Automation and Correctness, respectively. The second is

the chance of the proposed experimental methodology not being an adequate

representation of a real usage scenario of code recommendation. Although we

recognize the possibility of such threats, we have no concrete evidence that they

have actually occurred in our case.

Regarding the open-source projects we have evaluated in this work, we

needed a fully compilable source code to extract the codification patterns.

38



This is a trivial task for a real usage scenario, although we needed to checkout

old open-source project revisions, which made this task very time-consuming.

Nonetheless, a fair and correct analysis required access to all of the projects’

historical dependencies, including old versions of external libraries. We could

not obtain these versions for many projects, which prevented us from assessing

more than five projects. This limited amount of projects impacted the external

and conclusion validity of the experimental evaluation. In the former, we could

not guarantee that these projects are a representative set of all the other open-

source Java projects. In the latter, because we could not run statistical tests

over the results.

4. Related Work

In this section, we discuss works [6][12][16][17][18][19][20][21] that present

strategies for collecting and recommending source code patterns.

Hindle et al. [12] use natural language processing to model programming lan-

guages to discover appropriate code completion suggestions. The authors claim

that programming languages, in theory, are complex, flexible, and powerful, but

the programs that people actually write are mostly simple and rather repeti-

tive, having predictable statistical properties that statistical language models

can capture. Using this idea, source code repositories are lexically analyzed

after comments removal, and every textual element is mapped to tokens. These

tokens are organized using an n-gram model, which statistically estimates how

likely tokens are to follow other tokens through conditional probabilities, gen-

erating a language model. Finally, when a new code is under development,

the previous two tokens coded are used in an attempt to guess the next token.

The obtained tokens are ranked using their probabilities and presented to the

developer.

Laerte et al. [4] proposed Vertical Code Completion (VCC), a code comple-

tion approach that goes beyond the existing syntax-based approaches. Their

approach aims at providing more sophisticated suggestions strongly related to

39



the sequence of lines of code being developed. It takes the sequence of lines al-

ready coded into consideration to suggest new lines to be coded using sequential

pattern mining techniques to obtain these suggestions. First, the entire source

code is analyzed to discover recurring sequential patterns representing frequently

coded line sequences. After that, during the coding stage, the sequence of lines

already coded is matched to the beginning of one of the previously obtained

patterns, and the remainder of the pattern is automatically suggested.

Nguyen et al. [18] proposed an improvement to the approach of Hindle et

al. [12]. Instead of using a strict lexical model, they introduce the Statistical Se-

mantic Language Model for Source Code, where lexical elements are mapped to

semantic tokens. Each token stores semantic information, such as role (variable,

operator, data type, function call, keyword, etc.), scope, and also dependencies

to other tokens. As in Hindle et al. [12], an n-gram model is adopted, but in

this case, it is extended to an n-gram type model, where the functionality of a

code is captured and used to influence token probabilities.

Raychev et al. [21] proposed a structured prediction to source code by rep-

resenting the code as a variable dependency network. Their approach trains

a probabilistic model by using existing data to predict the properties of new

programs. Each JavaScript variable is represented as a single node, while their

pairwise interactions are modeled as a conditional random field. This field is

then trained to predict the types and names of all variables within a snippet of

code.

Gu et al. [19] proposed DeepAPI, an approach based on deep learning that

allows users to query in natural language for certain API. Their approach learns

the sequence of natural words in a query and relates to a sequence of associated

APIs by encoding the word sequence into a context vector to generate the API

recommendation.

Nguyen et al. [20] also proposed a new approach, Dnn4C, that uses Deep

Neural Network models to incorporate syntax and type contexts in a program

to complement existing lexical code elements to predict the next code token.

The authors associate code tokens with syntactic annotations to determine the

40



syntax context and the code with the annotations for the type context. These

contexts are extracted and translated to vectors, together with the lexical vec-

tors, and are passed as input to their predicting model.

Although we could find several approaches in the literature, they do not

evaluate important aspects of the code recommendation that affect the usage

of all of them. Among these aspects, we could cite the ideal number of offered

recommendations, the usage of filters to show only recommendations that have a

minimal confidence, and the validity of recommendations in the face of software

evolution. Thus, the main contribution of this paper is a detailed study of those

aspects of code recommendation and their implications.

5. Conclusion

This work presented a set of studies about sequential code patterns recom-

mendation. Nowadays, multiple works in the literature aim at recommending

code from previously written code. However, there was little knowledge about

how these patterns could be used effectively in code recommendations.

The first contribution of this paper is the development of an experimental

infrastructure that allowed the evaluation of code recommendation over the en-

tire history of widely-known open-source projects. For a matter of comparison,

some existing work [5] assessed only 10 commits of each project, reaching 31

method bodies evaluated in the most analyzed project. In this work, consider-

ing only the Spring Security project, we assessed 649 commits. In RxJava, we

assessed 2,897 method bodies.

With the availability of this infrastructure, we could evaluate the overall

code recommendation effectiveness according to different perspectives. In our

first study, where we investigated the impact of filtering out the code recom-

mendation suggestions by their rank, we identified that the top five ranked

suggestions are the ones that deliver the best results. However, the suggestions

ranked in subsequent positions could also be useful, which led us to state that

code recommendations can take advantage of a pagination structure.

41



Our second study filtered out suggestions according to their confidence val-

ues. This evaluation showed us that the code recommendations that deliver the

best results are the ones with the highest confidence values, which indicates that

confidence is indeed an appropriate metric to classify the code recommendation

patterns. Moreover, we could observe that, with a restrictive confidence filter,

it is possible to reach correctness values above 80%.

The third study evaluated the code recommendation performance as the

source code evolves. We were able to identify that during the first evaluated com-

mits, when the patterns are still up-to-date, the Automation metric is around

30%. In addition, we observed that the code recommendation performance de-

grades as the source code evolves since patterns become outdated with this

evolution.

Regarding the patterns applicability, we only explored code recommendation

patterns extracted and applied in the same project in the current evaluation.

However, as many of these patterns involve external libraries, they can be ap-

plied in other projects. A very interesting evolution of our work would be the

classification of these patterns according to the libraries they invoke. This could

allow providing code recommendations across projects. A potential future work

would be be to analyze the effect of working with smaller sequences (blocks).

Also, another future work would be to classify the recommendations and also

detect cloned code fragments. Lastly, adding control structures to the recom-

mendation is also an interesting future work.

6. Acknowledgments

Funding: This work was supported by CNPq [grant numbers: 306137/2017-

8 and 310444/2018-7], FAPERJ [grant number: E26/010.101250/2018], and

CAPES.

42



References

References

[1] R. Pressman, Software Engineering: A Practitioner’s Approach, McGraw,

2009.

[2] R. Robbes, M. Lanza, How program history can improve code completion,

in: IEEE/ACM International Conference on Automated Software Engi-

neering (ASE), IEEE Computer Society, Washington, DC, USA, 2008, pp.

317–326. doi:10.1109/ASE.2008.42.

URL http://dx.doi.org/10.1109/ASE.2008.42

[3] M. Bruch, Eclipse code recommenders, available in http://www.eclipse.

org/recommenders/ (2012).

[4] L. L. N. da Silva Junior, T. N. de Oliveira, A. Plastino, L. G. P. Murta,

Vertical code completion: Going beyond the current ctrl+space, in: Brazil-

ian Symposium on Software Components (SBCARS), Natal, RN, Brazil,

2012, pp. 81–90.

[5] L. L. N. da Silva Junior, A. Plastino, L. G. P. Murta, What should i code

now?, Journal of Universal Computer Science 20 (5) (2014) 797–821.

[6] R. Hill, J. Rideout, Automatic method completion, in: IEEE International

Conference on Automated Software Engineering (ASE), Washington, DC,

USA, 2004, pp. 228–235. doi:10.1109/ASE.2004.19.

URL http://dx.doi.org/10.1109/ASE.2004.19

[7] R. Holmes, G. C. Murphy, Using structural context to recommend source

code examples, in: International Conference on Software Engineering

(ICSE), New York, NY, USA, 2004, pp. 117 – 125.

[8] D. Mandelin, L. Xu, R. Bod́ık, D. Kimelman, Jungloid mining: Helping

to navigate the api jungle, SIGPLAN Not. 40 (6) (2005) 48–61. doi:

43

http://dx.doi.org/10.1109/ASE.2008.42
https://doi.org/10.1109/ASE.2008.42
http://dx.doi.org/10.1109/ASE.2008.42
http://www.eclipse.org/recommenders/
http://www.eclipse.org/recommenders/
http://dx.doi.org/10.1109/ASE.2004.19
https://doi.org/10.1109/ASE.2004.19
http://dx.doi.org/10.1109/ASE.2004.19
http://doi.acm.org/10.1145/1064978.1065018
http://doi.acm.org/10.1145/1064978.1065018
https://doi.org/10.1145/1064978.1065018
https://doi.org/10.1145/1064978.1065018


10.1145/1064978.1065018.

URL http://doi.acm.org/10.1145/1064978.1065018

[9] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen,

J. Al-Kofahi, T. N. Nguyen, Graph-based pattern-oriented, context-

sensitive source code completion, in: International Conference on Software

Engineering (ICSE), Piscataway, NJ, USA, 2012, pp. 69–79.

URL http://dl.acm.org/citation.cfm?id=2337223.2337232

[10] N. Sahavechaphan, K. Claypoolr, Xsnippet: Mining for sample code, in:

International Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA), Portland, OR, USA, 2006, pp. 413–

430.

[11] S. Thummalapenta, T. Xie, Parseweb: a programmer assistant for reusing

open source code on the web, in: International Conference on Automated

Software Engineering (ASE), Atlanta, GA, USA, 2007, pp. 204–213.

[12] A. Hindle, E. T. Barr, Z. Su, M. Gabel, P. Devanbu, On the naturalness

of software, in: International Conference on Software Engineering (ICSE),

Piscataway, NJ, USA, 2012, pp. 837–847.

URL http://dl.acm.org/citation.cfm?id=2337223.2337322

[13] J. Han, M. Kamber, Data Mining: Concepts and Techniques (3rd edition),

Morgan Kaufmann, 2011.

[14] R. Kohavi, et al., A study of cross-validation and bootstrap for accuracy

estimation and model selection, in: International Joint Conference on Ar-

tificial intelligence (IJCAI), San Francisco, CA, USA, 1995, pp. 1137–1145.

[15] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns: Ele-

ments of Reusable Object-Oriented Software, 1st Edition, Addison-Wesley

Professional, 1994.

[16] J. Jacobellis, N. Meng, M. Kim, Cookbook: In situ code completion using

edit recipes learned from examples, in: Companion Proceedings of the 36th

44

https://doi.org/10.1145/1064978.1065018
https://doi.org/10.1145/1064978.1065018
http://doi.acm.org/10.1145/1064978.1065018
http://dl.acm.org/citation.cfm?id=2337223.2337232
http://dl.acm.org/citation.cfm?id=2337223.2337232
http://dl.acm.org/citation.cfm?id=2337223.2337232
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://doi.acm.org/10.1145/2591062.2591076
http://doi.acm.org/10.1145/2591062.2591076


International Conference on Software Engineering, New York, NY, USA,

2014, pp. 584–587. doi:10.1145/2591062.2591076.

URL http://doi.acm.org/10.1145/2591062.2591076

[17] T. Kinnen, Supporting reuse in evolving code bases using code search,

Master’s thesis, Technical University Munich, Munich, Germany (2013).

[18] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, T. N. Nguyen, A statistical

semantic language model for source code, in: Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on

The Foundations of Software Engineering (ESEC/FSE), New York, NY,

USA, 2013, pp. 532–542. doi:10.1145/2491411.2491458.

URL http://doi.acm.org/10.1145/2491411.2491458

[19] X. Gu, H. Zhang, D. Zhang, S. Kim, Deep api learning, in: Proceedings of

the 2016 24th ACM SIGSOFT International Symposium on Foundations

of Software Engineering, FSE 2016, ACM, New York, NY, USA, 2016, pp.

631–642. doi:10.1145/2950290.2950334.

URL http://doi.acm.org/10.1145/2950290.2950334

[20] A. T. Nguyen, T. D. Nguyen, H. D. Phan, T. N. Nguyen, A deep neural

network language model with contexts for source code, in: 2018 IEEE 25th

International Conference on Software Analysis, Evolution and Reengineer-

ing (SANER), IEEE, 2018, pp. 323–334.

[21] V. Raychev, M. Vechev, A. Krause, Predicting program properties from

”big code”, in: Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’15, ACM,

New York, NY, USA, 2015, pp. 111–124. doi:10.1145/2676726.2677009.

URL http://doi.acm.org/10.1145/2676726.2677009

45

https://doi.org/10.1145/2591062.2591076
http://doi.acm.org/10.1145/2591062.2591076
http://doi.acm.org/10.1145/2491411.2491458
http://doi.acm.org/10.1145/2491411.2491458
https://doi.org/10.1145/2491411.2491458
http://doi.acm.org/10.1145/2491411.2491458
http://doi.acm.org/10.1145/2950290.2950334
https://doi.org/10.1145/2950290.2950334
http://doi.acm.org/10.1145/2950290.2950334
http://doi.acm.org/10.1145/2676726.2677009
http://doi.acm.org/10.1145/2676726.2677009
https://doi.org/10.1145/2676726.2677009
http://doi.acm.org/10.1145/2676726.2677009

	Introduction
	Materials and Methods
	Project Corpus
	Independent and Dependent Variables

	Results and Discussion
	RQ1: In a code recommendation, how many frequent coding patterns should be presented?
	RQ2: What is the impact of filtering suggestions by their confidence instead of only ranking them?
	RQ3: Does the effectiveness of the sequential coding patterns degrade over time?
	Threats to Validity

	Related Work
	Conclusion
	Acknowledgments

