
This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at https://doi.org/10.1109/TSE.2020.2988241.

Dominoes: An Interactive Exploratory Data
Analysis tool for Software Relationships

Jose Ricardo da S. Junior, Daniel Prett Campagna, Esteban Clua, Anita Sarma, and Leonardo Murta

Abstract—Project comprehension questions, such as “which modified artifacts can affect my work?” and “how can I identify the

developers who should be assigned to a given task?” are difficult to answer, require an analysis of the project and its data, are context

specific, and cannot always be pre-defined. Current research approaches are restricted to post hoc analyses over software

repositories. Very few interactive exploratory tools exist because the large amount of data that need to be analyzed prohibits its

exploration at interactive rates. Moreover, such analyses typically require the user to create complex scripts or queries to extract the

desired information from data. Here we present Dominoes, a tool for interactive data exploration aimed at end users (i.e., project

managers or developers). Dominoes allows users to interact with different types and units of data to investigate project relationships

and view intermediate results as charts, tables, and graphs. Additionally, it allows users to save the derived data as well as their

exploration paths for later use. In a scenario-based evaluation study, participants achieved a success rate of 86% in their explorations,

with a mean time of 7.25 minutes for answering a set of (project) exploration questions.

Index Terms—Design Tools and Techniques, Interactive data exploration and discovery, Evaluation/methodology.

F

1 INTRODUCTION

SOFTWARE development leaves traces of activities – his-
tory of changes and who made those changes, list of

bugs and issues related to the software, which changes fixed
which issues, which files were changed together, and so
on. This data, when analyzed, can help project managers
and developers understand work dependencies in the team,
development patterns, artifact coupling, location of frequent
bugs among other relationships [1], [2], [3], [4], [5], [6].
Software teams are now increasingly analyzing historical
data to inform their engineering and business decisions [7].

For example, Alice is a developer who wants to find
someone who can help her in her bug-fix task. To reach
this goal, she may create smaller subgoals, finding and
making sense of the information from each subgoal, which
then guides her next set of explorations. For example, Alice
might first want to explore the files that she has changed
for her (incorrectly resolved) bug-fix task. She may then
want to find who has expertise in those files. To do so,
she may find developers in the recent past who modified
those files. Or she may go one step further to find the
dependent files on her bug-fix changes, and then find the
developers who were involved with those dependent files.
The key point is that in exploratory data analysis (similar
to exploratory programming) users have a goal in mind
that requires further experimentation and creative problem
solving to reach that goal [8], [9].

• Jose Ricardo da Silva Junior is with Computer Science of Instituto Federal
do Rio de Janeiro.
E-mail: jose.junior@ifrj.edu.br

• Daniel Prett, Esteban Clua, and Leonardo Murta are with the Instituto de
Computaćão of Universidade Federal Fluminense, Brazil.
E-mail: danielcampagna@id.uff.br,{esteban,leomurta}@ic.uff.br.

• Anita Sarma is with Electrical Engineering and Computer Science of
Oregon State University.
E-mail: anita.sarma@oregonstate.edu.

Manuscript received April 19, 2005; revised September 17, 2014.

However, very few interactive tools exist that allow end
users to seamlessly explore their project history at interac-
tive rates, and across different granularities. This happens
because of the following challenges:

• Data is currently fragmented across different reposito-
ries, and has different formats. For example, version
control systems store source code and its change his-
tory; issue tracking systems store bugs and discussion
comments; mailing lists and chat forums contain com-
munication records;

• Data scales according to the complexity/duration of
the project and the granularity of analysis. For ex-
ample, typical software projects contain thousands of
artifacts, developed by hundreds of developers, over
many years. If we are to consider the changes at fine
granularities – that is, at the level of lines of code
or methods – the scale of analysis makes interactive
explorations and data visualization infeasible; and

• Data is produced continually over time. For example,
active projects may have tens to hundreds of new
issues, commits, and e-mail messages per day. Pre-
processing this data in advance and using these static
datasets does not reflect the current state of the project,
as they may become outdated as the project (and its
data) evolves.

While some tools allow project explorations, they typi-
cally focus on a small subset of the data and the questions
that they can answer (e.g., EEL [10] focuses on expertise
identification, and scopes the amount of data that can be
analyzed). Others allow explorations over project charac-
teristics and relationships that are defined a priori (e.g.,
Tesseract [11] allows exploration across three interlinked
panels displaying file, developer, and bug dependencies),
or require the end user to write queries [12], [13].

Information Fragments [3] is the only tool that allows

Copyright c© 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE
by emailing pubs-permissions@ieee.org.

https://doi.org/10.1109/TSE.2020.2988241

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

users to “compose” information by combining data frag-
ments about specific work items, files, and their authors.
It allows answering one question at a time (e.g., who is
working on what), but is not suited for re-composition or
backtracking, and therefore, unsuited for exploratory data
analysis. Moreover, Information Fragments, like the other
tools, operates at a predefined (coarse) granularity level (i.e.,
files). Providing interactive explorations at coarse-grain is
itself computationally expensive and becomes prohibitively
expensive if one has to allow navigation from fine-grain
(changed line of code) to coarse-grain (expertise in a project)
levels and vice versa —a key need in exploratory analysis.

Here we present Dominoes, an interactive, project ori-
ented exploration tool, where end users can explore dif-
ferent relationships across the different software project
elements (e.g., which developer has changed a method that
I have changed in the past). Our approach organizes data
extracted from software repositories into matrices that are
then visually represented as domino tiles reflecting relation-
ship between two project elements (e.g., [commit|method]).
It allows users to interact with these tiles, such that tiles
can be interconnected based on a set of matrix operations to
derive additional domino tiles. These derived domino tiles
in turn represent specific project entity relationships (e.g.,
number of commits in which two methods co-occurred), and
can be used for further explorations or visualizations.

Dominoes has been specifically designed to allow data
exploration by: (1) representing all the data as matrices
and allowing transformation of these matrices by leveraging
software project relationships, (2) allowing users to traverse
between coarse- and fine-grained project explorations, (3)
providing a domino game metaphor for intuitive and in-
teractive explorations of software relationships, (4) showing
the intermediate and final results through graphics, and (5)
transferring heavy data computation processing to Graphi-
cal Processing Units Parallelism (GPU).

In previous papers [14], [15], we presented the underly-
ing approach behind Dominoes, how it extracts data from
different software repositories, the types of operations, and
the GPU processing and data modeling. Besides that, in an-
other paper [16] we presented results from empirical studies
about how our approach can be used to identify developers
expertise at a fine-grained level (method), how it varies
across time, and the speedup of running the explorations
in GPUs. Thus far, we presented the data analysis by using
a command line interface.

In this paper, in addition to describing the approach,
we introduce a novel interactive Graphical User Interface
(GUI) for Dominoes, to enable end-user interactions. We
present a scenario-based user study with nine participants,
where seven were software professionals. This evaluation
not only helped us assess the usefulness of Dominoes, but
also sheds light on how developers explore software project
relationships. We stopped at nine participants, since we
reached saturation, that is, we were seeing the same patterns
in which participants were combining the Dominoes tiles to
answer the scenario questions. The user study focused on
answering the following research questions:

RQ1: How useful is Dominoes in facilitating exploration of
project repositories in terms of effectiveness and efficiency?

RQ2: What types of explorations do participants perform
when using Dominoes?

Our results show that participants in the study achieved
a success rate of 86% in their explorations, taking an average
of 7.25 minutes for answering (project) exploration ques-
tions. Participants used intermediate data visualizations as
check-points to guide and correct their exploration paths.
While there was a learning curve, participants became adept
in completing the study tasks after their initial interactions.

We then performed two additional evaluations. First,
we interviewed five software professionals to determine the
kinds of questions that they have to answer in their every-
day work and how Dominoes could help in answering these
questions. Through these interviews, we identified different
real-world exploratory questions that Dominoes can help
answer. Then, as some participants of the previous evalua-
tion suggested adding automation features to Dominoes, we
implemented a recommendation support where developers
provide the expected endpoints of an answer and Dominoes
shows all answers that respect such endpoints. We could
observe that such feature is promising, showing the correct
answer in the top two to five recommendations.

The remainder of this paper is organized as follows:
Section 2 presents the Dominoes approach, summarizing
its architecture, presenting the basic tiles extracted from
software repositories, and showing operations that allow
creation of new tiles. In the same section we also present
the design rationale of Dominoes GUI. Section 3 presents
the scenario-based user study used to assess the usefulness
of Dominoes. Section 4 presents the feedback collected
from industry professionals regarding the applicability of
Dominoes in their everyday work. Section 5 presents how a
recommendation feature would help Dominoes to answer
the scenario questions introduced in Section 3. Section 6
presents some related work while Section 7 concludes the
paper and discusses future work.

2 DOMINOES

In this section we first present an overview of the Dominoes
infrastructure and its tiles. We then discuss the design
rationale behind Dominoes. Finally, we present the GUI
of Dominoes, using a scenario to explain how users can
interact with its different features.

2.1 Dominoes Infrastructure

Dominoes is designed such that it extracts data from soft-
ware project repositories and cross links the associated
information. It is comprised of a set of modules that extract
and process the data, as shown in Fig. 1.

The Extractor module (Fig. 1, blue box) accesses the
repositories to extract data that is then used for building re-
lationships. For example, commits, issues, discussions about
a commit, or pull request can be collected from GitHub.
Currently, we mine Git (for version management) by cloning
and accessing the remote project repository. Dominoes then
pre-processes the data from the repository by analyzing
which files, packages, classes, and methods were modified
to create a tree of all modifications. We use the Eclipse

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

Dominoes

Extractor

Database

Basic Tile

Builder

Memory

Serialization

Deserialization

CUDA Kernels

Linear

Transformations

Data Mining

Statistics

BinaryData

BinaryData

Client Analysis

Request

Basic Tile

Derived Tile

Fig. 1. Dominoes’ architecture.

ASTParser (suitable for Java-based projects) to obtain a fine-
grained view of the modifications for each commit. For ex-
ample, even if we represent changes at the package level (for
a coarse-grained analysis), we know exactly which classes,
as well as which methods were modified. This information
is then stored in a relational database. After the initial data
collection, the database can be updated incrementally to
accommodate subsequent project activities.

After the pre-processing stage, the Basic Tile Builder
module constructs the basic building tiles. The basic build-
ing tiles are the elements used by Dominoes to organize
and represent data relationships. They consist of two-
dimensional matrices of elements from the database. These
tiles then become available to the users through the UI,
allowing them to manipulate the tiles according to their
needs. Basic building tiles can be combined or manipulated
to create derived building tiles, which can be further combined
with other basic or derived tiles.

Dominoes provides several operations over the data,
which are performed by the following modules: (1) Linear
Transformations for multiplication, transposition, aggrega-
tion, and sorting of tiles, (2) Data Mining to obtain support,
confidence, and lift of tiles, and (3) Statistics for calculating
the mean or median of tiles. In Section 2.2 we discuss the
basic and derived tiles together with the linear transforma-
tions provided by Dominoes. The data mining and statistics
operations are not discussed here as they were not used in
the analyses presented in this paper, but are detailed in [15].

Performance becomes an issue when we compute rela-
tionships at the fine-grain level. Therefore, in order to allow
efficient computation at interactive speeds, we model the

above operations into a Single Instruction Multiple Data
(SIMD) architecture, making it possible to execute the in-
tensive matrix operations on a GPU device. When a matrix
manipulation is required, Dominoes forks its execution by
triggering the respective asynchronous GPU code (called
kernel) based on the desired operation.

While designing Dominoes, we considered different ap-
proaches for modeling our data in a way that would make it
easy and intuitive for end users to manipulate the data. One
approach was the MapReduce method [17]. MapReduce
relies on two important operations: mapping data to a key
and reducing this data to a smaller set. However, among
all the operations available in Dominoes, only one involves
dataset reduction (“aggregate). Additionally, MapReduce
involves constantI/O operations, leading to a constant data
transfer between CPU and GPU memory. It is important to
note that data transfer between memories is a bottleneck
for GPU applications [18]. Modeling the data structure as
matrices allows optimal parallelization, especially in the
case of operations that have only local data dependencies
and avoid code divergence, as it is in our case.

Except for the CUDA kernel operations, Dominoes is
developed in JAVA. Performing operations over these tiles,
therefore, requires communicating the data with the kernels
in CUDA. Consequently, Dominoes implements a Java Na-
tive Interface (JNI) that is responsible for the Serialization
and Deserialization of building tiles to and from CUDA.

2.2 Dominoes Tiles

Dominoes consists of a set of basic building tiles that can be
combined to produce derived building tiles. Here is a list of
the basic building tiles available in Dominoes:

• [class|method] ([Cl|M]): relationship between a class
and its constituent methods, where cell [i,j] has a value
of 1 when class i contains method j.

• [file|class] ([F|Cl]): relationship between a file and its
constituent classes, where cell [i,j] has a value of 1 when
a file i contains class j.

• [commit|file] ([C|F]): relationship between commits
and files, where cell [i,j] has a value of 1 when commit
i adds or modifies file j. Note that the index i does not
denote the commit id.

• [commit|method] ([C|M]): relationship between com-
mits and methods, where cell [i,j] has a value of 1 when
commit i adds or modifies method j.

• [developer|commit] ([D|C]): relationship between de-
velopers and their commits, where cell [i,j] has a value
of 1 when developer i is the author of commit j.

• [package|file] ([P|F]): relationship between a package
and its constituent files, where cell [i,j] has a value of 1
when a package i contains file j.

• [issue|commit] ([I|C]): relationship between commits
and issues, where cell [i,j] has a value of 1 when commit
j implements/fixes issue i.

Dominoes allows different operations to be applied over
these tiles. The multiplication operation (×) multiplies two
dominoes tiles generating a derived tile. In fact, it behaves
in the same way of matrix multiplication. The transposition
(T) operation transposes rows and columns in a matrix that
represents a Dominoes tile. Aggregate (

∑
) is an operation

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

that sums up either all the rows or columns of a matrix,
producing a column or row matrix (i.e., a vector). As an
example, applying the “aggregate by row” over the [C|F]
tile ([

∑
C|F]) produces the count of changes over each file,

whereas aggregating by column on the same tile ([C|
∑

F])
produces the count of files changed by each commit. Finally,
(↑) and (↓) represent increasing and decreasing sorting or-
ders, respectively. In this case, [C↑|F] performs an increasing
sort over commit values.

The basic tiles can be combined in many different ways.
Here we list a small set of derived tiles that are computed
by using only multiplication and transposition:

• [method|method] ([M|M] = [C|M]T × [C|M]): repre-
sents method dependencies, where [i,j] denotes the
strength of dependencies between methods i and j. Ad-
ditionally, the main diagonal of this matrix represents
how many times a method has been modified (also
achieved through [

∑
C|M]). The rationale behind this

matrix is based on logical coupling, as elements that are
co-committed share some programming logic. We can
also create an [M|M] matrix through program analysis–
in this case it would be a basic building tile. Such [M|M]
matrices have been explored by Steward [19] in creating
Design Structure Matrices.

• [class|class] ([Cl|Cl] = [Cl|M] × [M|M] × [Cl|M]T):
represents class dependencies, where [i,j] denotes the
strength of the dependency between class i and class j.
In Dominoes, results at a higher level of abstraction can
be easily obtained by combining tiles from lower level
(e.g., composing this [Cl|Cl] tile with [F|Cl] or [P|F] ×
[F|Cl] would raise the abstraction to the file or package
level, respectively).

• [issue|method] ([I|M] = [I|C] × [C|M]): represents the
methods that were changed regarding an issue. Apply-
ing an aggregation operation over the (bugfix) issues
allows identifying the methods that are “buggy”, as
these methods tend to have a high number of issues
related to them.

• [developer|method] ([D|M] = [D|C] × [C|M]): repre-
sents the methods that a developer has changed and
can be used to identify experts on a particular method.

• [developer|class] ([D|Cl] = [D|M] × [Cl|M]T): repre-
sents classes that a developer has changed. [D|Cl] uses
the composition operation to provide expertise infor-
mation at the class level, which is typically used during
bug triaging [3].

• [developer|developer] ([D|D] = [D|M] × [M|M] ×
[D|M]T): represents the social dependency among de-
velopers due to the underlying technical dependencies
in their work. This derived building tile uses other de-
rived building tile ([M|M] and [D|M]) in its definition.

• [commit|commit] ([C|C] = [C|M] × [C|M]T): represents
similarity among commits by considering common
methods that were changed by them.

2.3 Design Guidelines

Dominoes’ graphical user interface was designed to enable
end users, who in our case can be project managers or
developers, to perform exploratory data analysis over their
projects. The Dominoes design leverages the following set

of guidelines that, when blended together, provide a highly
interactive and powerful tool for exploratory analysis of
software engineering data.

Domino tile metaphor: A primary goal of Dominoes
is to allow a user to reason about the data relationships
among project elements. Additionally, we want users to be
able to explore different project relationships. We, therefore,
use graphical elements that resemble domino tiles to allow
users to explore their project by combining these tiles. Users
can try different (data) tile combinations and operations,
such that they can explore different relationships among the
project elements.

We allow direct manipulation of graphical pieces, in-
stead of a query-based approach [12], [20] because: (1) the
tiles allow users to more easily visualize the different project
elements, and how they can be combined together, (2) users
can incrementally compose their final query by exploring
the different project relationships, and (3) users do not need
know or learn a specific query language, or formally express
ahead of time how the data should be integrated; creation
of appropriate queries is often a barrier for end users [3].

Data, operations, and visualizations are first-class el-
ements: Performing exploratory data analysis, by its defi-
nition, involves exploring and evaluating different aspects
of the (project) data. We leverage visualizations to enable
users to check the results of their exploration, and refine
their exploration as needed. Further, we explicitly treat data
(project elements), operations that can be performed on the
data, and visualizations as first-class entities, such that users
can seamlessly explore different data elements by operating
over the tiles, and checking the results of the exploration
through visualizations.

Seamless transition across granularities: Different types
of questions can be answered at different levels of gran-
ularity. For example, a class may need to be refactored if
there are multiple developers working on the same class,
which might lead to merge conflicts. Similarly, a package
may need to be refactored to match the structure of a
distributed team to improve coordination (Conways Law
[21]). Sometimes, the same question can be asked at different
levels of granularity. For example, developers’ past edits to
a class can be used to determine the developer who is an
expert on a class [1]. However, edits at the method level can
reflect the expertise coverage of a developer on a class [16].
We, therefore, allow seamless transition among granularities
(low to high) by leveraging different types of composition
matrices ([class|method], [file|class], [package|file], etc.) and
operations over these matrices.

Exploration at interactive speed. As noted, a key re-
quirement of Dominoes is to support project exploration
across different project elements and granularity. For this
to be successful, the tool needs to have high computation
performance. Large software projects have hundreds of
developers, thousands of files, which in turn may contain
many methods, and thousands of commits. This quickly be-
comes a big-data problem. We therefore, allow incremental
data updates, use GPU for big data transformations (matrix
transformations), and adopt thresholds in visualizations and
in segmenting the data to allow quick data explorations. Our
GPU implementation achieved up to three orders of magni-
tude of performance increment when compared with our

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

efficient matrix-processing algorithms running in CPU [16].
Exploration history: A key aspect of exploratory data

analysis is investigating different ideas, and then identifying
a (good) solution. Such an exploration requires backtracking
of ideas or jumping off of a previous (partial) analysis.
We allow users to perform such exploration of project data
through: (1) undo-redo of operations, (2) derived tiles that
represent partial analysis steps that users can reuse, and (3)
exploration paths that are archived for each derived tile so
that users can understand how they arrived at a solution
(derived tiles), or reuse the exploration path partially or in
its entirety. The exploration paths can be viewed in a tree
format (along with backtracks).

Extensibility: A primary goal of our work is to allow
Dominoes to be easily extended to include different types of
data, operations, or visualizations. We, therefore, decouple
the data collection from consumption. New types of data
can be easily collected by creating wrappers for different
types of repositories (e.g., a choice of version control sys-
tems such as SVN, Git, Mercurial), or different types of
data (e.g., version histories, issues, email). Currently, we
collect data from version histories (Git) and extract issue
information from Bugzilla. Additional wrappers for differ-
ent repositories or types of data can be “plugged” into the
system. Similarly, we currently have visualizations such as,
network graph, matrix view, tree structure, and bar chart.
Other visualizations, such as heat-maps or radial charts, can
be easily added. This extensibility of data collection and
visualization is possible because Dominoes uses matrices,
a simple and general data structure.

2.4 Dominoes GUI

Dominoes interface comprises four panels as shown in Fig.
2. The top pane (Fig. 2 (a)) allows users to select a project to
work with, as well as the time frame for analysis. Besides
that, it presents a timeline view of the project activities
regarding the number of commits and the number of new
issues. Users can use the “Project” button to import a new
project or update an existing project with new data. Addi-
tionally, the library panel (Fig. 2 (b)) holds all the dominoes
tiles (the basic building tiles and the derived ones). The
editor canvas (Fig. 2 (c)) is where users can compose the
tiles or operate over them. Finally, the visualization canvas
(Fig. 2 (d)) is used for presenting different types of data
visualization allowed by Dominoes.

We explain the features of Dominoes through a hypo-
thetical scenario. Let us consider Alice as our persona. She
needs to identify remote team members who can collaborate
with her. In the rest of the section, we describe how Alice
uses Dominoes to get this information. Note, we use the
(real) data from the Apache Derby project when explaining
this (intentionally simple) scenario. In real life, developers
can explore more complex software relationships.

Alice starts Dominoes and accesses its main window
(Fig. 2). Alice decides to use the last thirteen months for
her analysis (Jan 2013 to Jan 2014) and, after selecting the
period in the project panel, she clicks on the “Set” button to
start the analysis. Dominoes then generates a collection of
basic building tiles representing relationships in the project
(Fig. 2 (b)), as discussed in Section 2.1.

Alice decides to start her explorations by first looking at
each tile. She decides to pick the [commit|method] ([C|M])
and [class|method] ([Cl|M]) tiles. To perform this action, she
double clicks these tiles in the library pane (Fig. 2 (b)) to
copy them to the editor canvas pane. The editor canvas (Fig.
2 (c)) with the tiles is shown in Fig. 3.

Alice is interested in knowing which commits were
related to which classes, she therefore tries to combine the
[C|M] and [Cl|M] tiles. However, note that to combine (mul-
tiply) the matrices they need to have an equal number of
column and row for the first and second matrix, respectively,
which translate to the same edge relationship. Since [C|M]
and [Cl|M] do not share the same dimension, Dominoes
does not allow Alice to connect these two tiles (red colored
compartments in Fig. 4).

Alice realizes that the relationship types to be combined
(method-method) needs to be aligned between the two tiles.
So, she transposes the [Cl|M] matrix by double clicking the
tile, which graphically swivels the tile in the editor canvas,
as shown in Fig. 5. As an alternative, she could have right
clicked on the tile and selected “transpose” operation.

Once the [Cl|M] matrix is transposed, Dominoes allows
both tiles to be connected by presenting green colored com-
partments. This leads to the derived tile [C|Cl], containing
information about the commits involved with the classes.
Fig. 6 illustrates this operation and the derived tile.

In order to avoid redoing these operations, she saves
the tile by clicking over the piece and selecting the “save”
option. Once she performs this operation, the derived tile
become available in the library panel, as can be seen in Fig. 2
(b) (the last piece in the column). In order to ensure that she
remembers the logic behind the derived tile, since there can
be other ways to achieve the same relationship, each saved
tile shows its history (small gray letters) below its name (Fig.
6). Hovering over a tile also provides the information about
that tile in a tool tip, as well as the number of rows and
columns in the matrix.

Alice then continues her exploration in Dominoes. She
decides to create a [commit|commit] matrix by combin-
ing the [C|Cl] tile with its transpose to generate the
[C|C] tile. She then multiples the following tiles: [D|C]
([developer|commit]), [C|C], and [D|C] transposed to gen-
erate the [developer|developer] matrix. This matrix iden-
tifies developers that committed over the same classes,
which presents relevant information for identifying which
developers are able to replace others because their commits
involved a common set of classes. Alice decides to save the
[D|D] tile for future use.

Now that Alice has created the underlying data, she
wants to identify which developers are interconnected with
her. Dominoes allows four different types of visualizations
to be used: network graph, matrix view, tree structure, and
bar chart, as shown in Fig. 2 (d) and Fig. 7.

As Alice wants to visualize the interconnection among
developers, she selects the “Graph” view to visualize the
[D|D] matrix. This visualization (Fig. 2 (d)) shows devel-
opers (blue nodes) who are interconnected because of a
common set of classes that they committed together. The
view allows Alice to set a threshold on the edge weight;
that is, she can filter out developers whose edges (number of
connections) are below a certain value. When she searches

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

Fig. 2. Dominoes’ main interface. It is composed of four panels: (a) project selection, (b) library of tiles, (c) editor canvas, and (d) visualizations.

Fig. 3. Editor canvas after adding [C|M] and [Cl|M] tiles.

Fig. 4. Wrong combination feedback provided by Dominoes.

Fig. 5. Dominoes’ piece transposition.

for her name (lower right corner of the UI in Fig. 2 (d)),
Dominoes highlights in yellow the node representing her.
Then she can follow the edges from her node to identify the
two other developers who are connected to her. Hovering

Fig. 6. Dominoes’ piece connection, producing the derived tile [C|Cl].

over a node shows the name of the developer (here, Bob)
connected to her. Besides that, as seen in the top left of Fig.
2 (d), Dominoes allows multiple visualizations to be open
on separate tabs allowing different perspectives. All charts
stay active as long as the tile that was used to create the
visualization remains in the editor canvas.

3 USER STUDY

Our evaluation goal is to understand how developers would
explore their project relationships and assess how Dominoes
can facilitate such explorations. Through a scenario-based
user study we assess Dominoes in terms of its effectiveness,
efficiency, and usability in performing project explorations.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

(a)

(b)

(c) (d)

Fig. 7. Different types of visualizations allowed in Dominoes: (a) the contextual menu for selecting the type of visualization, (b) tree structure, (c)
matrix, and (d) bar chart visualization.

We also investigated the different types of exploration, back-
tracking, and corrections participants performed in their ex-
ploratory data analysis, resulting in two research questions:

RQ1: How useful is Dominoes in facilitating exploration of
project repositories in terms of effectiveness and efficiency?

RQ2: What types of explorations do participants perform when
using Dominoes?

3.1 Methodology

We used a scenario-based, think-aloud study, where we
presented participants with situations where they had to
investigate a project’s history using Dominoes to answer
a set of questions. Think-aloud studies help us better un-
derstand participant behavior–which aspects of Dominoes
they considered using, where they faced problem, how they
problem-solved. A subset of the Apache Derby project his-
tory has been used to formulate the following four scenarios
(i.e., tasks). The project history comprised data from Jan
2013 to Jan 2014. The selected period included 602 commits,
1,316 changes to classes, 7,792 changes to methods, and 264
issues. We chose Apache Derby as our test project because it
has been stable, long-living, and active since its beginning.

3.1.1 Scenarios

Participants were presented with four scenarios. Each sce-
nario was guided by the list of questions that developers
ask, as presented by Fritz and Murphy [3]. They identified
78 questions grouped into eight domains. Our scenarios
build on these questions, but map to more than one ques-
tion. We selected those questions (from [3]) that require
investigation across at least two software dependencies
and include a historical component. We chose compound
questions so that we could: (1) investigate the process fol-
lowed by participants as they explored different aspects of
their project data and (2) assess Dominoes’ usefulness in
aiding this process. Of course, end users can explore simpler
or more complex software relationships. Each consecutive
scenario was slightly more complex, with respect to the
complexity of operations and granularity of data.

We had all participants follow the same order of tasks
as we wanted participants to first learn to use Dominoes
in less complex situations. We recognize that such a task
sequencing leads to learning effects, but this is not a problem
as all participants had the same training opportunity. In the
following, we discuss each scenario, as well as the mapping
of these scenarios to the questions (referred to as Q#) in Fritz
and Murphy work [3].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Scenario 1: “Richard is planning on performing a major
refactoring over the code he has worked on in the last 3 months.
He wants to analyze the commit history of his modifications to
identify which developers might be affected by his refactoring.
How can he do so?” This scenario maps to Q13 (“Who is
working on the same classes as I am and for which work item?”)
or Q26 (“How do recently delivered changes affect changes that I
am working on?”). One way a user can answer this scenario is
by identifying all the developers whose changes are related
to Richard’s changes (Richard is an actual Derby devel-
oper). One possible answer when considering changes at the
method-level is [D|D] = [D|C] × [C|M] × ([D|C] × [C|M])T ,
where similar commits (i.e., changing the same methods)
are used to identify the dependency among developers. This
scenario represents the basic usage of Dominoes, where tiles
can be combined based on their underlying relationships by
using the multiplication and the transposition operators.

Scenario 2: “Knut has been a core developer in Derby, but
lately has too many issues to resolve and is not able to fix them
quickly enough. Therefore, his manager has decided to give him
a team of developers. Knut would like to include in his team
people he has worked with before, in the context of fixing issues
in the past 6 months. How can Knut identify the developers he
should include in his team?” This scenario maps to Q11 (“What
classes has my team been working on?”), Q43 (“Who has made
changes to [a] defect?”), or Q1 (“Who is working on what?”).
An ideal solution is identifying the issues that were related
to commits that Knut made, and then identifying other
developers who also committed to these issues: [D|D] =
[D|C] × [I|C]T × [I|C] × [D|C]T . This scenario is more open-
ended than the previous scenario, incorporates additional
data source (issues), and spans a longer time period.

Scenario 3: “A senior developer, Susan, wants to iden-
tify the appropriate developer to be assigned to a new task
that requires significant modifications to the class java.drda.org.
apache.derby.drda.NetworkServerControl. She wants to do so us-
ing the development history of the class in the last 4 months.
How can Susan identify the best developer for this task?” This
scenario maps to Q5 (“Who to assign a code review to? / Who
has the knowledge to do the code review?”), Q6 (“What have
people been working on?”), or Q8 (“What is the evolution of the
code?”). An ideal solution involves the following operations:
[D|Cl] = [D|C] × [C|M] × [Cl|M]T . This operation is more
complex than the previous ones, as there is no piece that
directly involves changes (commits) to a class. Participants
have to navigate from fine-grain (method) to coarser grain
(classes). They also need to use the appropriate visualization
(graph) to find the right information from that visualization.

Scenario 4: “The Derby team has realized that they have
not refactored their code base in a while and functionalities have
been added in an ad-hoc manner, so they need to refactor their
code base. However, they have limited time for doing this, so they
want to first identify the classes that are the most brittle – that
is, classes that have undergone a lot of changes in the last six
months of development. How can the team do this refactoring?”
This scenario can be mapped to Q23 (“Which class has been
changed most?”), Q8 (“What is the evolution of the code?”), or
Q27 (“What code is related to a change?”). This scenario is the
most open-ended, and there are several different ways to
answer it. One possible answer is: [C|Cl] = [C|M] × [Cl|M]T ;
[
∑

C|Cl↓], where a user sums the number of times that

TABLE 1
Participants’ characteristics backgrounds.

CM Experience
P# Gender

Industry Academic
Degree

Repo Analysis

Experience

P1 F - 4 years Ph.D. No

P2 M - 2 years MS No

P3 M 1 year 4 years MS No

P4 M 4 years 3 years BS No

P5 M 0.5 years 5 years MS Yes

P6 M 8 years 2 years BS No

P7 M 4 years 1 year BS No

P8 M 8 years 4 years BS Yes

P9 F 7 years 2 years MS Yes

a classs method has changed, followed by a (decreasing)
sorting operation on the classes. A user may also analyze
how much of a class has changed (the number of methods
in the class that has been edited).

3.1.2 Participants

We were interested in how managers and developers would
use Dominoes to explore project relationships. Since novice
developers as well as non-programming managers will need
to understand their projects, we selected developers with
different backgrounds and experiences. Table 1 shows the
general demographics.

All participants had experience in software development
and version control systems. Seven out of nine (P3-P9) had
experience working in an industrial setting: two with less
than 2 years of experience, whereas five had 4 or more years
of experience. Of the two participants with only academic
project experience, P2 was a novice (2 years) and the other
(P1) had 4 years of experience. Three participants (P5, P8,
P9) had experience exploring version control repositories as
part of their job. They had used the command line options to
analyze version histories to identify who made a change in
the past or how a class had evolved. Participants had varied
academic backgrounds – ranging from BS (four), MS (four),
and Ph.D. (one) in computer science, stating that they had
worked on programming as part of their academic studies.
Seven participants were male and two were female.

3.1.3 Study Design and Analysis

Participants were instructed on the overall experiment setup
to get their (informed) consent. We then explained the think-
aloud method, followed by a video tutorial about Domi-
noes. Participants were also reminded about the concepts of
matrix multiplication and transposition. These steps took
around 25 minutes. After this, we gave participants five
minutes to explore Dominoes, using a different database
from the one used in the experiment.

Once participants had finished the training, they were
presented with the four scenarios, one at a time. Each sce-
nario was time-boxed to 15 minutes; participants were asked
to move to the next task after this time. We time-boxed each
scenario so that all participants could experience all the sce-
narios. We did not provide any help to participants during
the session. At the end of each scenario, participants saved a
screenshot of their solution. Participants talked-aloud when
answering question for each scenario. We recorded audio of
what the participant said and screen-capture video.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

The first author, sitting off to the side, took notes about
unusual actions or problems faced by the participant. At
the end of the study, participants were given a short break,
during when the author conferred his notes and the record-
ings to identify actions that needed clarifications. He then
conducted a semi-structured, retrospective interview. For
unusual actions or mistakes, he replayed the screen-capture
video to participants and asked them about their action(s).

At the end of the interview, participant filled out an
exit survey containing the following questions about their
experience with Dominoes: (1) Were Dominoes tiles easy to
interact with? (2) Were Dominoes derived tiles easy to create and
use? (3) Were Dominoes operations easy to use? (4) Were Domi-
noes visualizations useful in answering the questions? and (5)
Did Dominoes help you to investigate the Apache Derby project?
These questions had a five-point Likert scale, ranging from
Strongly Disagree (1) to Strongly Agree (5). Additionally,
participants used the Microsoft Product Reaction Card 1 to
best select their experiences during Dominoes usage.

We answer the RQ1 through a quantitative analysis
of participant data and feedback (Section 3.2.1), and RQ2
through qualitative analysis, as detailed below.

We used a baseline code set inspired by previous re-
search [22], [23] to analyze the exploration behavior of
participants and the barriers they faced (Section 3.2.2). We
created new codes to represent participant actions when
using Dominoes (Table 4). We coded the video recording
by annotating the video with the specific actions. Two
researchers performed this action on a participant’s data
and performed negotiated agreement to reach consensus
about the code categories and the rule set. A code was
dropped if we could not reach consensus after three rounds
of discussions. After this step, the first author coded the rest
of the participant data.

3.2 Results

Here we present our evaluation results structured around
our research questions.

3.2.1 How useful is Dominoes in facilitating exploration of

project repositories?

We answer this question by analyzing Dominoes in terms of
its effectiveness, efficiency, and user satisfaction.

Effectiveness: We calculate the correctness scores of
participants for each scenario (see Table 2). On an average
3.44 (out of 4) answers were correct (median 4). Five out of
nine participants got all answers correct; whereas, three par-
ticipants got one answer incorrect, and one participant got
two answers incorrect (P5). On further analysis regarding
P5, we found that he did the least amount of exploration
of the different tiles and ways to combine them (see Section
3.2.2). Moreover, he was convinced that his answers were
correct for all the scenarios.

All participants answered scenario 4 correctly, despite
it being an open-ended question. When considering P5,
although he did not explore different options for this sce-
nario, he did formulate the scenario correctly. Moreover,
this allowed him to reuse the concepts (e.g., sorting the bar
graph) from Scenario 3, which he had answered correctly.

1. Developed by R©. 2002 Microsoft Corporation. All rights reserved.

TABLE 2
Task Completion Times (in minutes) and correctness (3) or failure (7).

Scenario
P#

S1 S2 S3 S4
Average

P1 7.3 3 3.7 3 12.4 3 10.1 3 8.38

P2 3.9 3 6.1 3 8.9 3 7.2 3 6.53

P3 4.2 3 3.8 3 6.4 7 6.1 3 5.13

P4 7.5 3 5.8 3 14.2 3 5.9 3 8.35

P5 3.7 7 2.5 7 7.8 3 8.3 3 5.58

P6 8.1 3 3.4 3 10.4 3 10.1 3 8.00

P7 7.3 3 8.1 7 15.6 3 8.3 3 9.83

P8 3.1 3 4.2 3 8.7 3 4.2 3 5.05

P9 4.2 3 2.9 3 14.2 7 12.3 3 8.40

Average 5.48 4.50 10.96 8.06 7.25

Finding 1: Participants using Dominoes reached correct
answers in 86% of the cases.

Learning: On average, participants took 7.25 min. to
complete the tasks (see Table 2). Some participants (P3, P5,
P8) finished the tasks relatively quickly (avg. = 5.25 min),
whereas some (P1, P4, P6, P7, P9) took longer (avg. = 8.6
min). P8 took the least amount of time per task (avg. 5.05
min) and got all the questions correct. On the other hand,
P5 spent less time on scenarios 1 and 2 and got both of them
wrong. Apart from P5, there is no clear pattern between the
time spent on a question and correctness. Note that both P5
and P8 performed repository analysis as part of their jobs,
however, P8 had more experience.

Past studies have shown that after a substantial training
over SQL (1.5 hours), users could write queries that join two
domains in a mean time of 5.10 minutes [24]. The first two
scenarios that required combining data from two domains
(S1: [D|C] × [C|M], S2: [D|C] × [I|C]T) were completed in
an average of 5.48 and 4.50 minutes, respectively. This is
very close to what can be accomplished using queries, but
only after extensive training. In contrast, our participants
had only 15 minutes of training in Dominoes.

Scenarios 3 and 4 were open-ended and needed more
exploration, and hence more time (10.96 min and 8.06 min,
respectively). Scenario 3 took the longest time. We found this
was because participants had to sort on a specific column
and use the bar chart, therefore, they had to figure out the
right operation (sort), on the right data column/tile, and the
correct way to order the bar chart.

Please notice that P7 spent 15.6 minutes (exceeding the
time-box of 15 minutes). It was due to a short computer
frezing during screen capture. However, the answer to the
question has been formulated during the specified time.

Finding 2: Dominoes has a 15-minute learning curve.
After 15 minutes of training, participants could use
Dominoes (taking about 5 min. for answering each
structured scenario).

Satisfaction: We infer the satisfaction of using Dominoes
based on our survey and the terms chosen by participants

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

Fig. 8. Word cloud chose by participants using the Microsoft Reaction
Card.

in the Microsoft Reaction Card2. All the questions were
answered by the participants in a private room.

The exit interview contained Likert Scale questions about
the ease of use of Dominoes (Table 3), where answers could
range from strongly disagree (1) to strongly agree (5). The re-
sults show that all answers are positive – all above “agree”.
Of special note is Q5, which was about how useful was
Dominoes in performing exploration of the Apache Derby
project. It received the highest score (4.89). The lowest score
(4.11) is for how easy it was to use the operations; two scored
their answers as neutral (3). These participants were P5 and
P7; both had performed explorations that were deviating
from the results, and had incorrect answers. The difficulties
in using the operations likely affected their perceptions (and
their results). These responses reflect that participants were
satisfied with using Dominoes. However, we recognize that
participants could be influenced by the wording of our
questions and the fact that they were responding to a tool
evaluation. We discuss this further in Section 3.3.

We also asked the participants to rate each of the four
scenarios on the ease of performing exploration. The aver-
age Likert scores for the scenarios are: 4.56 (S4), 4.44 (S2),
4.11 (S1), and 3.33 (S3). The median scores for all scenarios
was 5, except for S3, which was 3. This was a scenario that
two participants got wrong (P3 and P9), and took the longest
time (avg. 10.56 min), which is a likely reason for the neutral
answer from participants.

We present the results of the Microsoft Reaction Card
through a word cloud depicting the frequency of terms
selected by participants (see Fig. 8). The five most frequent
words were: Efficient (6), Time-Saving (5), Fast (5), Innova-
tive (5), and Useful (5). These results show that participants
found Dominoes to be quick and efficient in allowing them
to explore the project repository. We believe that the ability
to pick a tile (project relationship), compose it with other
tiles, and visually verify the answer helped participants
quickly find answers. As P6 mentioned: “I am impressed...
Dominoes produces data very fast”.

Participants also found Dominoes to be innovative (three
additional participants chose “Novel” as a term), and
wanted to learn and “play” with the tool. Participant P1

2. Developed by and c© 2002 Microsoft Corporation. All rights re-
served.

TABLE 3
Participants’ satisfaction.

Question Avg. (med)

Q1. Easy to interact with Domino tiles 4.44 (5)

Q2. Easy to create and use derived tiles 4.56 (5)

Q2. Easy to use operations over tiles 4.11 (4)

Q4. Visualizations were useful to answer tasks 4.78 (5)

Q5. Dominoes helped in project exploration 4.89 (5)

said: “Congratulations. It [Dominoes] is an interesting tool.
When it will be available for use?”.

A few participants found the tool to be Complex (2) or
Too-Technical (1). These were participants with the lowest
experience with version control systems and had never
analyzed data repositories before. This suggests that there
is a learning curve associated with performing repository
analysis using Dominoes, especially in framing the explo-
ration as a composition of software relationships. A larger,
longitudinal study is needed to understand the severity of
the learning curve and its impact on project exploration.

Finding 3: Most participants addressed Dominoes as
efficient, time-saving, fast, innovative, and useful tool
in Microsoft Reaction Card.

3.2.2 What types of explorations do participants perform

when using Dominoes?

To better understand the kinds of exploration behavior facil-
itated by Dominoes, we qualitatively analyzed participant
actions. We frame our results by first analyzing the steps
that participants took to perform their explorations. We then
investigate the effects of the different navigation strategies
employed by our participants.

Analytics Step

We categorized the different analytic steps taken by our par-
ticipants into four main categories: exploration, verification,
adjustments, and organization. Within each of these categories,
we identify the specific exploration behavior. Table 4 details
these steps further.

Based on recorded videos, each participant’s actions
were encoded using the negotiated agreement as described
earlier. Fig. 9 presents a visual overview of the different
analytic steps taken by participants per scenario (task). Each
participant operation is represented as a cell (3 millimeters
wide), with specific user actions (e.g., save, reuse, backtrack)
annotated in the graph with an icon. The length of each
bar represents the number of steps a participant performed
during the study.

We color the segments of the graph based on their explo-
ration type. When participants use tiles or operations that
lead towards the correct solution (i.e., “Move Forward”),
these operations are colored green. On the other hand, when
participants use tiles or operations that do not lead to the
right solution (i.e., “Deviate”), such operations are colored
red. Finally, when participants are repeating previous ac-
tions, they are colored in yellow with horizontal lines in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 4
Categories used for classifying participants’ steps.

Code
Description

Category Name

Exploration

Move Fwd. Performs actions towards the cor-
rect solution

Deviate Performs actions that do not lead to
a correct solution

Repeat Repeats past (wrong or right) ac-
tions

Verification
Checkpoint Verifies if the actions thus far are

correct

Confirm Checks another visualization to en-
sure the correctness of answer

Adjustment

Viz. Tweak Adjusts some aspects of the visual-
ization

Tile Tweak Adjusts some aspect of the tile

Backtrack Abandons current exploration path

Organization
Save Saves derived tiles

Reuse Uses derived tiles

green or red, should these actions lead to the right solution
or deviation, respectively.

For each scenario, we mark in the graph whether the
participant got the correct answer (a tick mark) or failed to
do so (a cross mark).

To contrast different types of user behavior let us con-
sider participants P7 and P5. P7 had 4 years of industry
and some experience in academic development (1 year). He
had no experience in repository analysis. He performed the
largest number of actions using the tool (283 actions and 48
tiles), and had many actions where he was deviating from
the path (26 actions), as well as repeating right actions (9)
and wrong actions (2). He frequently used the visualizations
as check points to understand whether he was in the right
path (or still on the wrong path). Based on these visualiza-
tion checks, he backtracked his investigation (in both S1 and
S4). He was relatively quick in the actions (see Table 2).

In contrast, P5 had 5 years of experience in academia,
but 0.5 years in industry; and had experience in performing
repository analysis. He got incorrect answers to S1 and S2.
He also performed the fewest actions (92 steps and 25 tiles).
He never recovered from the deviations (in both S1 and
S2). He used the visual checkpoints for all tasks, but for
S1 and S2 he did not realize that the data presented by the
visualization was wrong.

Finally, we take the example of P2, the person with no
experience in industry or repository analysis. We observe
that P2 obtained correct answers for all the scenarios. He
deviated in his explorations, but was able to recover by
using checkpoints. We see that although P2 was a novice, he
was able to easily grasp the working of Dominoes. In fact,
he recommended additional functionality such as ability to
order rows in the matrix visualization.

In summary, our observations and participant feedback
indicate that participants investigated different exploration
paths using the Dominoes interface, which was quick and
easy to operate. In the following subsections, we discuss the
participants exploration behaviors further.

P1 P2 P3 P4 P5 P6 P7 P8 P9

S1 S1 S1 S1 S1 S1 S1 S1 S1

S1 S1 S1 S1 S1 S1 S1 S1 Backtrack

Checkpoint

Confirm

S2 S2 Deviate

Moving Forward

Repeat and Deviating

S2 S2 S2 S2 Repeat and Moving Forward

S2 S2 Reuse

S2 Right Answer

S2 S2

Save

S3 S2 S2

S3 Tile Tweak

S2

S2 Time Setup

Visualization Tweak

S3 Wrong Answer

S3

S3

S3

S3 S2

S3 S3 S2

S3 S3

S3 S3

S4 S3

S3

S4

S4

S4

S4 S4 S3 S4

S3 S4

S4

S4

S4

S4

S4

S4

S4 S4

S4

S1

S2

S3

S4

Fig. 9. Participants’ action map.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

13

17

23

27

19 19

23

26

29

13

17

19

22

18
19

18 18

22

0

5

10

15

20

25

30

35

P5 P3 P9 P7 P2 P8 P4 P1 P6

N
u

m
b

e
r

o
f

T
il

e
s

Derived Tiles Unique Derived Tiles

2 Correct

Answers

3 Correct Answers 4 Correct Answers

Fig. 10. Total of derived and unique tiles, and right answer.

Finding 4: Dominoes allowed participants with dif-
ferent backgrounds to perform different types of data
exploration.

Alternative ideas

We found that trying multiple ways to analyze relationships
was helpful in reaching the correct answer. This showcases
the usefulness of allowing exploratory analysis, and multi-
ple paths to solving a problem–key principles of Dominoes.

The number of unique and derived tiles used by par-
ticipants and the correctness of their results indicate the
usefulness of exploration. Fig. 10 shows the total number of
unique derived tiles (blue) and derived tiles (green), sorted
based on the total number of correct answers.

Unique tiles: Each unique derived tile represents dif-
ferent relationships among artifacts, and thus a different
perspective of analysis. For instance, one can explore the
knowledge of a developer by using the edited files, leading
to tile [D|F] = [D|C] × [C|F] (coarse grain). The same insight
can be obtained by inspecting the edited methods by a
developer, leading to tile [D|M] = [D|C] × [C|M] (fine grain).
Thus, if a participant was stuck when analyzing the [D|M]
tile, she could derive the [D|F] tile and continue her analysis,
as [D|M] can easily connect with [Cl|M]T × [F|Cl]T .

Our participants performed such explorations review-
ing data from alternative perspectives. In fact, some used
exploration paths we had not envisioned. For instance, in
S3 we expected participants to use the total amount of
modifications per class ([

∑
D|Cl]). However, P1 and P5

answered the scenario by using a [D|Cl] tile. They used a
graph to visualize this tile and tweaked the threshold until
just one edge remained. Similarly, P3 also used a graph to
answer scenario 4. Participants using alternative ways of
composing information, which in turn helped them arrive
at the correct solution.

Finding 5: Dominoes allowed participants to generate
alternative and unique solutions for the same problem.

Derived Tiles: The total number of derived tiles, which
mirrors the number of unique tiles, also shows that when
participants explored composing data in different ways they
did better. At one end of the spectrum, we have P5 (leftmost
participant in Fig. 10) with the minimum number of derived
tiles (13) and just 2 right answers. On the other hand, P6

had the maximum number of derived tiles (29) and all four
scenarios having correct answers.

When we unpack the exploration behavior of the par-
ticipants in Fig. 10, we see that exploration (high number of
derived tiles) helped participants (P4, P1, P6) get (all) correct
answers. For example, P6, the participant with the most
derived tiles, tinkered a lot. He combined tiles in different
ways to visualize the relationship in the data from different
perspectives. P6, said: “What about if I combine these two pieces
[tiles]? Maybe this path will lead to the answer”.

Moreover, we find that exploration was helpful when
users were struggling to find the right answer. For example,
P5 barely performed any exploration when he was in the
“wrong path” (red patches in Fig. 9) and ended up with
incorrect solutions for scenarios 1 and 2. However, he spent
more time in scenarios 3 and 4, performing checks and
tweaking the visualization to arrive at the correct answers.
On the other hand, P7 had the most number of deviating
actions performed in the study (45 deviation steps in Fig.
11). However, these explorations allowed him to recover,
and he was able to correctly answer three scenarios (S1, S3,
S4). In scenario 2 (S2), where expertise was to be computed
based on the number of issues fixed; P7 however used the
number of file modifications. In the retrospective interview,
we found that he misunderstood the scenario. He said: “I
did not notice it [that issue fix was required]”.

P2 and P8 show a different pattern. Both have all cor-
rect answers with not much exploration. Our interviews
revealed that both participants understood the concept of
Dominoes very quickly. P8 had experience in repository
analysis and was used to combining data based on the
underlying relationships. P2 did not have experience in
repository analysis, but had background in data prove-
nance, allowing him to understand the concepts underling
Dominoes quickly. He said: “Dominoes pieces [tiles] are self-
explanatory and it is possible to easily understand relationships”.

Finding 6: Dominoes tends to fosters explorations; the
majority of participants who explored more were likely
to get correct answers.

Parallel Exploration: A key aspect of exploration is be-
ing able to compare and contrast alternatives [25]. Dominoes
allows users to explore multiple data transformations at
the same time. Users can simply keep multiple tiles in the
canvas (where a tile itself can be the output of data transfor-
mations). They can also combine different transformation
paths to get to a solution. Dominoes also allows parallel
explorations of its visualizations.

We found multiple cases (P1 and P9) where participants
performed parallel explorations during data manipulation.
For example, P1 in S3 made a wrong operation (aggregation)
on a tile, but she realized this after checking the visualiza-
tion. She then resumed working on a previous exploration
path (tile) that she had left on the canvas. She realized that
her previous path could be re-used and said: “I’ve made a
mistake but I can continue the exploration from this path”, and
switched to that path to reach a correct solution.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

TABLE 5
Checkpoints performed by participants in their explorations.

Part.

Keep

moving

fwd.

Keep

deviating

Change from

moving fwd.

to deviating

Change from

deviating to

moving fwd.

Total

P1 14 1 1 2 18

P2 9 2 1 2 14

P3 9 0 1 0 10

P4 19 1 1 0 21

P5 7 2 1 0 10

P6 14 0 1 2 17

P7 14 11 1 3 29

P8 9 1 0 1 11

P9 9 10 2 3 24

Total
104 28 9 13

154
(67.53%) (18.18%) (5.84%) (8.44%)

Finding 7: Dominoes supports parallel exploration, al-
lowing users to compare and contrast alternatives.

Checking intermediary results

When exploring the different types of data transformations,
participants often checked their intermediate results. These
checkpoints were steps where participants visualized a data
fragment (base or derived), annotated with a “magnifying
glass” in Fig. 9. As an example, participant P6 first looked
at the [D|C] tile to see the activities of a developer. He
recognized that he was in the right path, but needed to see
the activities at file-level, so he created the [D|F] tile and
checked the data again.

We found that the ability to check intermediate steps was
an important part of participants’ exploratory data analysis.
Participants used checkpoints to test if their “strategy”
had worked. As an example, after being stuck for a while
on S1, P6 created the right derived tile and checked the
output using the visualization. He exclaimed: “That’s it! My
rationale to answer the question is right and now I know how to
proceed”. On the other hand, P2 working on S2 performed a
checkpoint and realized he was in the wrong direction, and
said: “It will not help me as it is a diagonal matrix. It does not
make sense to be used”.

Our study had about 17.11 checkpoints per participant.
Table 5 presents the number of checkpoints performed by
the participants, categorized based on the type of explo-
ration path they were on. Columns 2 and 3 present instances
where participants kept moving forward in the right path
(shown as green in Fig. 9) or kept deviating (red in Fig. 9).
Columns 4 and 5 represent checkpoints performed imme-
diately before switching from deviation to moving forward
(switch color from red to green or yellow in Fig. 11) and
from moving forward to deviation (switch color from green
or yellow to red in Fig. 9), respectively.

We see from Table 5 that of all the checkpoints per-
formed, 67.53% (104 checkpoints) were done by participants
to ensure that their explorations were on the right path.
Participants were also performing checkpoints when they
were stuck to see if what they had done was correct (18.18%,
28 checkpoints). In few cases (5.84%, 9 checkpoints), par-
ticipants performed checkpoints and immediately changed

from moving forward to deviate, misinterpreting the infor-
mation presented to them.

Finally, in 8.44% (13 checkpoints) of the cases partici-
pants were able to get to the right path following a check-
point. Fig. 9 shows that of the 16 instances where partici-
pants moved from deviating (red) to the right path (green
or yellow), 13 of them were after a checkpoint. This means
checkpoints helped participants know that they were using
an incorrect strategy and were able to find a new strategy. In
two of the remaining three instances, participants recovered
by restarting their exploration.

Finding 8: Dominoes checkpoints were useful in pre-
venting users from deviating (67.5% of the uses).

Backtracking

We define backtracking as an action by which participants
change the direction of their exploration. This occurred
when participants performed an undo action or started
a new line of exploration by selecting a different set of
tiles from the library. As an example, P1 when trying to
find dependencies among developers first explored finding
the methods changed by a developer (by [D|M] = [D|C]
× [C|M]). But, she realized that this was not the right
approach, so she backtracked, deleted the tiles on the editor
canvas, and started exploring another path ([D|F] = [D|C] ×
[C|M] × [Cl|M]T × [F|Cl]T). She said: “That is not what I
want. It is wrong. I need another dominoes piece [tile]”

Fig. 11 shows the number of backtracks performed by
participants. We follow the same color coding as in Fig.
9, where green is moving forward, yellow is repeat, and
red is deviating. We see that every participant, except P5,
backtracked at least once. We also see that scenarios 3 and
4, which were open-ended, needed a lot more backtracking
than the first two scenarios.

In 14 out of the 15 backtracking instances, participants
reverted from an incorrect path to a correct one (red to green
or yellow). These backtracks were triggered by checkpoints:
13 out of the 15 backtracks. For example, after a checkpoint
in S3, participant P6 realized that he was in the wrong
direction. He backtracked after saying: “That is not what I
want. It is wrong. I need another dominoes piece [tile]”.

Finally, we find backtracking to be helpful in arriving at
the right solution. When we evaluate the incorrect answers
(5 cases), we find that in four out of the five cases partici-
pants did not backtrack (P3 (S3), P5 (S1 and S2), P7 (S2)).

Finding 9: Dominoes backtracking mechanisms al-
lowed the participants to revert incorrect exploration
paths in 93% of the times – 80% of the users that got
incorrect answers did not backtrack.

3.3 Limitations

Here we discuss the limitations of our study design and of
the tool itself.

Study design Limitations: This paper reports an ex-
ploratory study of how participants use Dominoes when

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

Fig. 11. Backtracking and checkpoint. The numbers indicates the rate of pieces / minutes used by the participant.

performing a set of data exploration tasks. Such an ex-
ploratory study was needed to first understand whether
users understand the Dominoes tile metaphor, and how
they perform explorations. Further studies are needed to
evaluate Dominoes in comparison to other data exploration
tools (e.g., Information Fragments [3]).

We stopped recruitment after 9 participants since we
found saturation in participant behaviors, participants were
repeating the exploration paths and the mistakes. Like in
any participant feedback, our exit interviews may be subjec-
tive and include desirability bias, we aimed overcome these
by basing the results mainly on the qualitative analysis of
user actions (and not just their responses to the question-
naire) and maintained rigor in the analysis through nego-
tiated agreement. The inherent nature of an observational
think-aloud study might create additional cognitive load in
participants needing to think aloud [26]. Such limitation can
be removed in future controlled quantitative studies.

Finally, we did not counterbalance the four tasks (scenar-
ios). This was a conscious choice. The tasks were designed to
be of increasing complexity, and it was important that par-
ticipants first start their exploration by answering simpler
questions before attempting open-ended explorations.

Tool Limitations. Currently, Dominoes provides seven
basic tiles that link project entities, such as commits and
its changes (method and file level), developer, and related
issues, as well as containment relationships of methods into
classes, files, and packages. Other kinds of data, such as
communication, team organization, and code review infor-
mation, are not yet available and would be interesting (as
noted in feedback from P6). The Dominoes architecture is
designed to makes it easy to add tiles for such information,
by creating a wrapper for the repository containing this
data. Some interactions, such as “drag and drop”, were
different than what participants (P2, P9) expected. For ex-
ample, double clicking a tile in the library brings it onto the
canvas, and tiles are rearranged in the library window by
dragging; P2 and P9 expected to drag a tile onto the canvas.

Participants suggested enhancements to the visualiza-
tions that would make it easier to understand or retrieve the
data. Some of the suggestions included a search (P1, P6) and
reordering (P2) functionality for the matrix visualization,
which can become quite large for tiles (e.g., scenario 3 led
to an 8 × 300 matrix). Another recommendation was to
provide tool tips or to annotate the bars (in the bar chart)

with the data, since it was difficult to accurately pin point
the data in a large visualization (lots of bars).

Another feature that could have benefitted participants
was if the visualizations automatically updated themselves
reflecting changes to the derived tiles. Currently, Dominoes
requires explicitly opening a visualization by right clicking
on a tile. This allows multiple visualizations to exist that can
be compared side-by-side, but sometimes, participants cre-
ated too many visualization and got confused. Additionally,
derived tiles do not retain their history when saved as a tile
(in the library), which might be useful to participants for
future explorations (P7).

Finally there are some questions that are ill-suited to
the matrix approach employed by Dominoes. One example
of such questions are the ones that involve navigating in
the transitive closure of data. For instance, identifying all
methods that could be directly or indirectly affected by a
bug in a specific method cannot be answered using the
current matrix manipulation logic of Dominoes.

4 MEMBER CHECKING: INDUSTRY PROFESSION-

ALS’ INTERVIEW

As an additional investigation of how Dominoes can help
professional software developers, we interviewed five soft-
ware professionals. The goal of this study was to determine
the kinds of questions that these software professionals had
to answer in their every day work and how Dominoes could
help answer these questions.

Participants: We recruited these software professionals
by emailing eleven developers, who had collaborated with
one of the co-authors in industrial research projects. We
could schedule five out of the eleven participants in a 1-
week period. Table 6 shows participants’ details. Partici-
pants (numbered, P11 to P15) all had significant experience
in software development (from 6 to 30 years), had different
occupations (e.g., software development, software engineer-
ing, project leader, and project manager), and worked with
different technologies. All participants had performed some
form of exploratory analysis as part of their work.

Method: The interviews were about one hour long. We
started the session by providing some explanation about
our research and obtaining their consent to record the in-
terview. We then explained the purpose of Dominoes and
the concepts behind matrix operations; these explanations

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

TABLE 6
Participants’ profile.

Part. Experience Occupation Exploratory Analysis Technologies Used

P11 10 years Project leader Identify developers that changed problematic code and
identify expert developers in the code

Git, Subversion, Track

P12 30 years Soft. eng. Identify students’ profile for merchandising Oracle

P13 13 years Soft. eng. Identify releases and release related information in a project Git, Java, Python

P14 21 years Project manager Identify how developers are organized among repositories Java, .Net, Clearcase, Subversion, Git

P15 6 years Soft. dev. Evaluate students’ profile Subversion, Git

were part of a script that the first author read out to ensure
consistency across participants. Next, we gave a hands on
demonstration of Dominoes by walking the participants
through scenarios 3 and 4, described in Section 3.1.1. During
this time, participants were encouraged to ask any questions
they might have had. After this demonstration, we allowed
participants to “play” with Dominoes if they desired, other-
wise, we asked them to provide us with examples of how
they envisioned using Dominoes in their own projects along
with concrete examples of such usage.

Analysis: The interviews helped uncover 16 distinct
questions that participants said they would use Dominoes
to answer. We categorized these questions into six broad cat-
egories based on the intent of the question. The first author
analyzed the interview transcripts to create these categories.
All the authors then met to discuss these categories and the
placement of the questions in these categories. Through one
round of negotiated agreement (two categories were similar
and were combined into one and another was dropped), we
arrived at the following set of four categories:

• Locate who: identify developer(s) with expertise on
different pieces of the code (at different levels of gran-
ularity).

• Locate what: identify details about particular changes
or issues in the project.

• Productivity: identify the amount of work performed
by individuals.

• Team organization: identify optimum work responsi-
bilities.

Results: Table 7 presents the questions that our partici-
pants said they would ask Dominoes when exploring their
project. Four out of five participants (P11-P14) mentioned
they would appreciate using Dominoes to seamlessly ex-
plore different types of data. A common theme of questions
was to identify which parts of the code were involved with
issues (Q7, Q9). Others included questions about what was
changed in the project (Q6-Q9); sometimes to find out which
parts of the code was likely to be buggy (Q7, Q9) or for
help in refactoring (Q8). P15 mentions how Dominoes can be
helpful by recalling an example: “...to identify ancient methods
to perform refactoring. A file can be changed a lot of times but it
does not guarantee all methods were changed... I worked in a three-
year-long project. In a few months before delivering it, I asked all
developers to check all the methods they created but never revised...
it was not possible to do so... we know some were missed”.

Participants wanted to know who had changed what to
figure out task assignments (Q1-Q4) or from whom to seek
help (Q15). Some participants wanted to use Dominoes to
help with their team management: decide which type of

tasks a developer should have (Q16), facilitate communi-
cation in the team (Q15), answer productivity questions of
the team (Q10-Q13), or organize the team to ensure there is
redundancy in expertise on complex parts of the codebase
(Q14): P12 said: “...in case just one developer is working on a
complex system, I would assign someone to work with him to
mitigate the risk”.

The ability to investigate data at a finer grained level was
appreciated by participants (Q1, Q6). P11 said: “allows fine
granularity... it becomes much easier to identify the exact methods
that have been changed by a developer”.

Additionally, participants mentioned that Dominoes
would be helpful in wrangling large amounts of data (P11,
P13). They appreciated the fact that by using Dominoes they
would not have to export the data into multiple tools or data
format (P12, P14). Participants felt Dominoes made project
exploration much less complex than what they would need
to do in Git (P12, P15), and Dominoes made data exploration
possible for both novice and experts (P14). Two participants
(P11, P15) felt that automation could help further (P15): “it
would be nice to have a feature where users inform the relationship
they desire and Dominoes produces all possible combinations to
reach this target relationship”. In Section 5, we explore how
such an automation feature could work in Dominoes.

Participants liked the ability to explore relationships
across different repositories (P11-P14). This ability to ask
questions across several repositories allowed them to chain
questions as they understood more about the project (P13):
“...Explore potential developer who creates a bug... combining
commit, issues, and classes tiles I can identify the classes that
have a high amount of modifications for solving a bug. From this,
I can then check the developers that changed this class in the
recent past... then I can infer that the one that most changed it
introduced the bug... I can combine pieces to explore developers
that are adding more bugs in the code. Using the information of
commits, I can produce a metric of effectiveness about the changes
performed by a developer”.

Additionally, participants appreciated the ability to ex-
plore the project data via visualizations (P11-P14). P12 said:
“biggest problem when using tools for selecting info in a database
is related to visualization. All the time, I needed to export the
resulting data in order to visualize the information”. All par-
ticipants (P11-P15) agreed that using Git to explore their
project is difficult, requiring them to know what information
they want to process, export/extract the information, and
run SQL queries. P14 said: “...difficult as the data produced by
Git should be imported into another tool in order to understand
how these information connect to each other. Besides that, a query
language would be necessary, which increases even more the com-
plexity of the analysis”. In fact, P13 had built a visualization

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

TABLE 7
Participants’ questions.

Category
Question Participant

Type P11 P12 P13 P14 P15

Locate Who

1 Who has changed what at a finer grained lens (method, complex files)? 3 3

2 Who has (historical) expertise on parts of code? 3

3 Who should edit a (given) code part? 3

4 Who should be assigned to an issue? 3

5 Who introduced a bug? 3 3

Locate What

6 What has changed at a finer grained (method, parts of code base, complex files,
across repo)?

3 3 3 3

7 Which files has had a lot of change (help find buggy places)? 3

8 Which files have become stale (help refactor)? 3

9 Which bug is related to which parts of code? 3 3 3

Productivity

10 Who is active now? 3

11 Who has done what (amount of commits, complex code)? 3 3

12 How long it takes someone to finish task? 3

13 Who creates buggy code? 3

Team organization

14 How well is expertise balanced to mitigate risk of lost expertise because of
turnover?

3 3

15 Who has expertise to help someone/ facilitate communication? 3

16 Who is right to fix bugs vs. make new feature implementation? 3

TABLE 8
Dominoes answers for the questions in Table 7.

Question # Answer

#1 [D|M] = [D|C] × [C|M]

#2 Usage of 3D Dominoes pieces [16]

#3 [D|Cl] = [D|C] × [C|M] × [Cl|M]T

#4 Same as #3

#5 [D|F] = [D|C] × [C|F] over a time frame

#6 [C|F] over a time frame

#7 [
∑

C|F↓]

#8 [
∑

C|F↑]

#9 Not yet implemented

#10 [
∑

D|C↓] over a time frame

#11 Same as #10

#12 [D|I] = [D|C] × [I|C]T

#13 Same as #3

#14, #15 Same as #2

#16 Same as #1

to simplify his project exploration. The tool showed which
developers had changed which files and which files were
changed together.

Finally, we investigated possible answers to these ques-
tions using Dominoes. Most of these questions are open-
ended, allowing a multitude of solutions. Table 8 shows one
possibility for answering each question in Dominoes.

In Table 7, question #1 asks for an overview of changes
as well as who performed it. The answer in Table 8 is at a
fine grain (method level). Questions #3 and #4 ask for advice
regarding task distribution, which can be answered by de-
termining the most appropriate developer, such as the one
who most changed the specified part of the code. Question
#2 is more specific, as it requires a historical analysis that
can be done by Dominoes API [16] (not available in GUI).
For question #5, one possible answer could be selecting the
last five days, for instance, and then retrieving the person
who edited the problematic artifact.

Question #6 is mostly like question #1 but viewed from
the artifact perspective in order to identify changes in a
selected time frame. On the other hand, questions #7 and
#8 are expected to indicate artifacts with more and fewer
modifications, respectively. It can be extracted by counting
the number of commits and sorting the result in descending
order, for the former, or ascending order, for the latter.
Question #9 cannot be answered by Dominoes in its current
version, but a transitive closure operation can handle these
questions, as stated by Kim et al. [27]. We are working on a
new version of Dominoes with such an operation.

Related to productivity, answering question #10 can be
done by counting the number of commits performed by
each developer and sorting the result. By scoping the time
frame, it is possible to select the most recent active develop-
ers for this analysis. Question #11 follows the same answer
of #10, but just counting commits may not be appropriate, as
some commits are more complex than others. Question #12
can only be answered by counting the number of commits
related to a task, while question #13 can use the number of
commits performed on a target artifact over a time frame for
identifying the developer that most changed it.

Questions #14 and #15 can be answered by using 3D
Dominoes pieces [16] in order to evaluate the expertise
variation along the time. Finally, question #16 requires some
sort of interpretation. To fix a bug, we can check the devel-
oper that has performed most changes in the piece of code
where the bug was found, for instance. For implementing
new features, one possibility is to identify the developer
with consistent expertise in this part of code by using 3D
Dominoes pieces.

5 EXPLORATION VS. RECOMMENDATION

Although we explicitly designed Dominoes to support ex-
ploratory analyses over software repositories, we believe
that users could benefit from additional recommendation
support during exploration (see Section 4). For instance,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

Dominoes could ask the users for expected relationship
endpoints and search for all tiles combinations that respect
such endpoints. Let us suppose that a user wants to know
all methods that were changed together with other methods.
The answer clearly has method in both endpoints: [M|M].
A recommendation system could list possible tile combi-
nations that would satisfy this query, such as: [Cl|M]T ×
[Cl|M], [C|M]T × [C|M], etc. Then, the user would need to
choose the most appropriate recommendation, which is the
second in this list. This kind of support could be especially
useful for newcomers, to understand possible combinations
of tiles and speed-up the exploration process.

To assess the feasibility and utility of such automated
support, we implemented a Jupyter notebook3 to simulate
the execution of the operations over tiles. This Jupyter
notebook receives the expected endpoints as input. Then, it
combines the existing tiles to create derived tiles, using both
transposition and multiplication, recursively. After that, it
filters the results by the desired tile endpoints and sorts
the results in ascending order of the number of operations
used. We used this Jupyter notebook to simulate all four
scenarios discussed in Section 3.1.1. For each scenario, we
provided the expected endpoints and collected the possible
recommendations. Table 9 shows the results.

The first column of Table 9 shows the scenario id. The
second column shows the expected endpoints, extracted
from the scenario description in Section 3.1.1. The third
column shows the number of necessary operations to reach
the correct answer. This number was derived from the cor-
rect answer shown in Section 3.1.1. For instance, the correct
answer for Scenario 1 is [D|D] = [D|C] × [C|M] × ([D|C] ×
[C|M])T , which requires one multiplication for the first two
tiles (X = [D|C] × [C|M]), one multiplication for the last two
tiles (Y = [D|C] × [C|M]), one transposition (Z = YT), and
one final multiplication (X × Z). The fourth column shows
the total number of possible answers after applying all
combinations of operations listed in the third column. Please
notice that not all theoretical combinations are possible
in practice because, while transposition can always occur,
multiplication can only occur when both tiles have end-
points on different sides in common. For instance, the two
operations (multiplication and transposition) applied over
the seven basic tiles would produce just 21 combinations:
the seven original basic tiles, the seven tiles derived from
the transposition of the basic tiles, and the 7 tiles derived
from the multiplication of basic tiles ([F|Cl] × [Cl|M], [C|F]
× [F|Cl], [P|F] × [F|Cl], [D|C] × [C|F], [I|C] × [C|F], [D|C]
× [C|M], [I|C] × [C|M]). When applying the two operations
in an iterative manner over the obtained tiles, we reach 53,
117, 231, and 450 combinations, respectively for 2, 3, 4, and 5
operations. Finally, the fifth column indicates the position in
which the correct answer appears among the combinations
listed in the fourth column after sorting all combinations
with appropriated endpoints (second column) in ascending
order of the number of operations. For instance, from the 231
possible combinations for Scenario 1, after filtering the ones
with [D|D] endpoints and sorting the results in ascending
order, the correct answer appears in the third position.

As shown in Section 3.1.1, the correct answer for Scenario

3. http://bit.ly/2UYV2EF

TABLE 9
Tiles recommendation statistics.

Scenario Endpoints # Operations # Combinations Rank

1 [D|D] 4 231 3

2 [D|D] 5 450 5

3 [D|Cl] 3 117 2

4 [C|Cl] 2 54 2

1 can be reached after applying 4 operations. The total
number of possible tiles after applying 4 operations is 231.
However, when we just consider tiles that start with ’D’
and end with ’D’, the correct answer can be found in the
third position: [D|C] × [D|C]T , [D|C] × [C|F] × ([D|C] ×
[C|F])T , [D|C] × [C|M] × ([D|C] × [C|M])T . For Scenario
2, out of 450 tiles generated after 5 operations, the correct
answer is listed in the fifth position, should the user provide
a template starting with ’D’ and ending with ’D’: [D|C] ×
[D|C]T , [D|C] × [C|F] × ([D|C] × [C|F])T , [D|C] × [C|M]
× ([D|C] × [C|M])T , [D|C] × [D|C]T × [D|C] × [D|C]T ,
[D|C] × [I|C]T × [I|C] × [D|C]T . For Scenarios 3 and 4,
the answers, respectively with 3 and 2 operations, would
appear in second out of 117 and 54 possible tiles, should the
user inform the expected endpoints: [D|C] × [C|F] × [F|Cl],
[D|C] × [C|M] × [Cl|M]T for Scenario 3 and [C|F] × [F|Cl],
[C|M] × [Cl|M]T for Scenario 4.

Although promising, a feature like this is still limited
when composing these tiles. The user would still need to:
(1) know the expected endpoints of the resulting tile, (2)
choose the correct tile from the list of possible solutions,
(3) choose the correct visualisation to interpret the results,
and (4) search for the correct answer in the visualization.
Depending on the results, the user may need to go back
to previous steps and start over. For instance, Scenario 4
also demands an aggregation over a specific column. Choos-
ing the correct tile suggested by such a recommendation
feature would be just a starting point for the exploration.
Consequently, we see such a recommendation feature as
complementary to the exploration features that are already
in-place in Dominoes.

6 RELATED WORK

While working on a software project, developers tend to
ask a variety of questions, such as “where is this method
called?” [3] or “who modified this class the most?” [28].
Some of these questions are easy to answer, as they target
individual information and have little or no ambiguity.

On the other hand, some questions such as “what ar-
tifacts being changed by my co-workers may affect my
work?” or “how can I identify the developers who should
be allocated to a given task?” require more effort to be
mined and answered. In order to answer these questions, it
is necessary to link together different pieces of information,
potentially coming from different repositories [29]. In this
case, it may be necessary to check an issue tracker in order
to verify in which parts of the code someone is working on.
Additionally, it may be necessary to check over communi-
cations from these coworkers.

Sillito et al. [28] conducted two qualitative studies about
developers performing changes tasks from medium to large

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

projects. One of the studies involved newcomers working
over these tasks while the other involves experienced pro-
grammers. The main focus of their work was to measure
what information developers need while performing the
task and how they achieve this information. The final result
is the categorization of 44 kinds of different questions; the
vast majority of which involves relationships with other
entities in the project.

In the same way, Ko et al. [30] conducted a study with
seventeen developers in order to analyze the information
they sought, the data source used by them, and most
importantly, the barriers that prevent these information to
be acquired. Interestingly, most of the questions types are
related to awareness about artifacts and coworkers. Besides
that, the cost of testing hypothesis and the risk of a false hy-
pothesis often prevent developers from finding their answer.
In this case, tools that allow fast and easy data manipulation
without requiring so many technical aspects can reduce
these barriers. Dominos goes in this direction by providing
mechanisms to compose and explore these relationships in
a fast way by employing GPU.

Cataldo et al. [1] stands out as they use matrices to
process dependencies among developers based on depen-
dencies among artifacts. In their approach, both structural
and logical dependencies become Task Dependency (TD)
matrices, and change requests, associating developers to
artifacts, becoming Task Assignment (TA) matrix. These
matrices are used in an equation that indicates coordination
requirements TA × TD × TT

D
. Our approach generalizes this

idea by allowing different kinds of exploration over matri-
ces. Our identification of relationships allows for combining
support, confidence, and lift, to compose the dependency
matrix depending on the required analysis. Moreover, we
shift the perspective from a predefined and offline process-
ing to an exploratory and online (interactive) processing
using the Dominoes tile metaphor and GPU processing.

A majority of current Exploratory Data Analysis tools
support exploration via visualizations and/or queries on
a predetermined set of project relationships and prede-
termined type of data repositories. Voinea and Talea [31]
present a framework capable of mining software reposi-
tories at coarse grain and presenting an analysis of this
data through different types of visualizations. Most of these
visualizations provide functionalities to sort a set of (pre-
determined) characteristics (such as developer’s-id or file
size) in order to infer information. In the same way, Metrics
Viewer [32] provides visualization over repository, such
as source code changes, without allowing manipulation of
these data. On the other hand, tools such as Tukan [33],
CollabVS [34], and Palantı́r [35] perform code analysis in
order to identify dependencies, allowing either predefined
questions or limiting the amount of artifacts that can be
analyzed in a reasonable amount of time. In the case of
Tesseract [11], for example, the available relationships are
preprocessed and the matrices are fixed at a coarse grain
level ([file|file], [file|developer], [file|bug], [bug|developer]),
imposing a subset of the data that can be explored. Tableau
[36] is a drag-and-drop application that generates queries
from different pre-selected data sources, allowing visual-
ization using different built-in chart types. However, to do
this the user needs to use VizQL [37]–a structured query

language–for selecting the data to be combined. Dominoes
on the other hand does not require knowledge of any
particular SQL query language.

Codebook [38] is a framework that mines relationships
from software repositories, building a graph of develop-
ers and artifacts. For instance, such graph can encode the
developers that are the authors of commits and the files
changed by commits. Expert users can build applications
that instantiate Codebook to run specific regular expressions
over the graph. End users can use such applications to query
Codebook through the predefined regular expressions ac-
cording to specific parameters (e.g., the name of a developer
or a file they want to search for). Dominoes distinguishes
from Codebook in two primary ways. First, Codebook is
a framework conceived to be instantiated into applications
(e.g., Hoozizat [38], WhoseisThat [39], and Deep Intellisense
[40]) that focus on providing predefined queries to end
users. Each of these applications focus on specific types of
project information. Dominoes, on the other hand, leverages
an intuitive and a fast interface that allows end users to
explore different project relationships on the fly. Second,
although Codebook was designed to be scalable, its depen-
dence on compilation of the regular expressions (queries)
into state machines requires almost an hour–a high start-up
cost for exploratory analysis. Dominoes multiplies matrices
cells in parallel over GPU in few seconds for most cases [14].

Information Fragments [3] is a tool that supports query-
ing information obtained from different sources (e.g., source
code, team, etc.), and is the closest in functionality to Domi-
noes. Each information source, called information fragment,
is represented as a graph of relationships among infor-
mation from the respective domain (e.g., method calls,
leadership, etc.). End users can compose new information
fragments (e.g., code ownership) by connecting existing
base fragments. These composed informations are in fact
new edges connecting nodes of previously disconnected
graphs. The composition operation relies on id matching
to connect nodes from different graphs. Text matching was
also proposed, but not implemented in the tool yet. Differ-
ently from Information Fragments, that requires composing
queries from scratch, Dominoes allows saving and reusing
composed tiles. This not only enhances the list of available
tiles for other users but also speeds up the answer of new
questions. Moreover, Information Fragments uses simple
hierarchical views to show the answer of the queries, while
Dominoes provide multiple views for presenting interme-
diate and final data. Finally, Dominoes was specifically
designed for supporting exploratory analysis of large repos-
itories by processing relationships as matrices in GPU. The
Information Fragments paper does not provide performance
evaluation; neither does it provide characterization of the
size of the project used in the evaluation. We plan to contact
the authors to get access to their tool to perform such a
comparative evaluation in the future.

7 CONCLUSION AND FUTURE WORK

In this paper we presented Dominoes, a tool that allows
users to perform interactive exploratory data analysis by
dragging, dropping, and connecting Dominoes tiles, which

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

represent project entities. Dominoes allows seamless hands-
on data exploration of a software project without requir-
ing the user to write scripts or queries, or be limited by
predefined relationships. Users can explore different project
relationships, backtrack, and save their exploration paths.
The key design decisions behind Dominoes are: (1) the use
of a high-level metaphor for abstracting project relationships
(dominoes tiles), (2) an intuitive mechanism for deriving
additional project relationships (composing dominoes tiles),
and (3) a fast mechanism for performing the matrix trans-
formations under the hood (via GPU).

We evaluated Dominoes’ usability by having nine par-
ticipants complete a set of four tasks, where they explored
the Apache Derby project by creating new derived tiles,
exploring different project relationships, and investigating
new perspectives when visualizing these relationships. Par-
ticipants were successful in 86.11% of their explorations, and
were able to learn the tool quickly. While our study recruited
participants with software engineering experience, we did
not control for repository analysis experience; Only three of
them had such experience (P5, P8, and P9). When comparing
these three participants with the others they took less time
on average (6.34 vs 7.70 minutes). However, they had more
incorrect answers (25% vs 8%). Further analysis revealed,
on average, they did less checkpoints (15.00 vs 18.16) and
performed less backtracking (1.33 vs 2.00). So, while they
had speed this did not convert to more accurate answers.
Further studies with different types of target users and
other types of software development projects are needed
to generalize our results.

We also presented Dominoes to five professionals and
collected real-world questions that Dominoes would be able
to support answering. Finally, we experimented with a
promising recommendation feature for Dominoes. A natural
extension of these evaluations is to release Dominoes to the
community in order to get feedback on tool enhancements
and a deeper understanding about the exploration behavior
of people exploring their own projects. Finally, the Domi-
noes approach can be applied to other domains by allowing
users to extract and cross-link different data elements, which
can then be used to create the Dominoes tiles (matrices).

ACKNOWLEDGMENTS

We thank the participants of our study. This work is partially
funded by CAPES, CNPq, FAPERJ, and NSF grants: 1815486
and 1560526.

REFERENCES

[1] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley,
“Identification of coordination requirements: implications for the
Design of collaboration and awareness tools,” ser. CSCW ’06.
New York, NY, USA: ACM, 2006, pp. 353–362.

[2] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How Developers
Drive Software Evolution,” vol. 0. Los Alamitos, CA, USA: IEEE
Computer Society, 2005, pp. 113–122.

[3] T. Fritz and G. C. Murphy, “Using Information Fragments to
Answer the Questions Developers Ask,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 175–184.

[4] J. D. Herbsleb and R. E. Grinter, “Splitting the Organization and
Integrating the Code: Conway’s Law Revisited,” ser. ICSE ’99.
New York, NY, USA: ACM, 1999, pp. 85–95.

[5] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical
congruence: a framework for assessing the impact of technical and
work dependencies on software development productivity,” ser.
ESEM ’08. New York, NY, USA: ACM, 2008, pp. 2–11.

[6] S. Mcintosh, B. Adams, M. Nagappan, and A. E. Hassan, “Min-
ing Co-change Information to Understand When Build Changes
Are Necessary,” in 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, sep 2014, pp. 241–250.

[7] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data scientists
in software teams: State of the art and challenges,” IEEE Transac-
tions on Software Engineering, vol. 44, no. 11, pp. 1024–1038, Nov
2018.

[8] A. J. Ko and B. A. Myers, “Debugging reinvented: Asking and
answering why and why not questions about program behavior,”
in Proceedings of the 30th International Conference on Software En-
gineering, ser. ICSE ’08. New York, NY, USA: ACM, 2008, pp.
301–310.

[9] T. Green, “Programming languages as information structures,” pp.
118–137, 1990.

[10] S. Minto and G. C. Murphy, “Recommending Emergent Teams,”
in Fourth International Workshop on Mining Software Repositories
(MSR’07:ICSE Workshops 2007). IEEE, may 2007, pp. 5–5.

[11] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract:
Interactive visual exploration of socio-technical relationships in
software development,” ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 23–33.

[12] C. Kiefer, A. Bernstein, and J. Tappolet, “Mining Software Repos-
itories with iSPAROL and a Software Evolution Ontology,” in
Proceedings of the Fourth International Workshop on Mining Software
Repositories, ser. MSR ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 10—-.

[13] S. Paul and A. Prakash, “A Query Algebra for Program
Databases,” IEEE Trans. Softw. Eng., vol. 22, no. 3, pp. 202–217,
1996.

[14] J. R. da Silva Junior, E. Clua, L. Murta, and A. Sarma, “Exploratory
data analysis of software repositories via gpu processing,” in
The International Conference on Software Engineering and Knowledge
Engineering (SEKE), 2014, pp. 495–500.

[15] ——, “Multi-Perspective Exploratory Analysis of Software De-
velopment Data,” International Journal of Software Engineering and
Knowledge Engineering, vol. 25, no. 01, pp. 51–68, 2015.

[16] ——, “Niche vs. breadth: Calculating expertise over time through
a fine-grained analysis,” in International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 2015, pp. 409–418.

[17] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6, ser.
OSDI’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 10–
10.

[18] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake,
GPU-Accelerated Database Systems: Survey and Open Challenges.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 1–35.

[19] D. Steward, “The design structure system: A method for managing
the design of complex systems,” IEEE Transactions on Engineering
Management, vol. EM-28, no. 3, pp. 71–74, 1981.

[20] P. Prabhu, T. B. Jablin, A. Raman, Y. Zhang, J. Huang, H. Kim, N. P.
Johnson, F. Liu, S. Ghosh, S. Beard, and Others, “A survey of the
practice of computational science.” New York, NY, USA: ACM,
2011, p. 19.

[21] M. E. Conway, “How do committees invent,” Datamation, vol. 14,
no. 4, pp. 28–31, 1968.

[22] A. J. Ko, B. A. Myers, and H. H. Aung, “Six Learning Barriers in
End-User Programming Systems,” in Proceedings of the 2004 IEEE
Symposium on Visual Languages - Human Centric Computing, ser.
VLHCC ’04. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 199–206.

[23] S. K. Kuttal, A. Sarma, and G. Rothermel, “On the Benefits of Pro-
viding Versioning Support for End Users: An Empirical Study,”
ACM Trans. Comput.-Hum. Interact., vol. 21, no. 2, pp. 9:1—-9:43,
feb 2014.

[24] H. Chan, K. Siau, and K.-K. Wei, “The Effect of Data Model,
System and Task Characteristics on User Query Performance: An
Empirical Study,” SIGMIS Database, vol. 29, no. 1, pp. 31–49, 1997.

[25] S. Srinivasa Ragavan, S. K. Kuttal, C. Hill, A. Sarma, D. Pi-
orkowski, and M. Burnett, “Foraging Among an Overabundance
of Similar Variants,” in Proceedings of the 2016 CHI Conference on

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

Human Factors in Computing Systems, ser. CHI ’16. New York, NY,
USA: ACM, 2016, pp. 3509–3521.

[26] S. Xu and V. Rajlich, “Dialog-based protocol: an empirical research
method for cognitive activities in software engineering,” in 2005
International Symposium on Empirical Software Engineering, 2005.,
Nov 2005.

[27] S. Kim, T. Zimmermann, K. Pan, and E. J. Jr. Whitehead,
“Automatic identification of bug-introducing changes,” in 21st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’06), Sep. 2006, pp. 81–90.

[28] J. Sillito, G. C. Murphy, and K. De Volder, “Questions Program-
mers Ask During Software Evolution Tasks,” in Proceedings of
the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. SIGSOFT ’06/FSE-14. New York, NY,
USA: ACM, 2006, pp. 23–34.

[29] A. E. Hassan, “The road ahead for Mining Software Repositories,”
in 2008 Frontiers of Software Maintenance. IEEE, sep 2008, pp. 48–
57.

[30] A. J. Ko, R. DeLine, and G. Venolia, “Information Needs in
Collocated Software Development Teams,” in Proceedings of the
29th International Conference on Software Engineering, ser. ICSE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 344–353.

[31] L. Voinea and A. Telea, “Visual querying and analysis of large
software repositories,” Empirical Software Engineering, vol. 14, no. 3,
pp. 316–340, jun 2009.

[32] S. Yasutaka, S. Matsumoto, S. Saiki, and M. Nakamura, “Visu-
alizing Software Metrics with Service-Oriented Mining Software
Repository for Reviewing Personal Process,” in 2013 14th ACIS In-
ternational Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing. IEEE, jul 2013, pp.
549–554.

[33] T. Schümmer and J. M. Haake, “Supporting distributed software
development by modes of collaboration,” in Proceedings of the Sev-
enth European Conference on Computer Supported Cooperative Work,
W. Prinz, M. Jarke, Y. Rogers, K. Schmidt, and V. Wulf, Eds.
Dordrecht: Springer Netherlands, 2001, ch. Supporting, pp. 79–98.

[34] P. Dewan and R. Hegde, “Semi-synchronous conflict detection
and resolution in asynchronous software development,” European
Conference on Computer-Supported Cooperative Work (ECSCW), pp.
159–178, 2007.

[35] A. Sarma and A. van der Hoek, “Palantir: coordinating distributed
workspaces,” in Proceedings 26th Annual International Computer
Software and Applications, Aug 2002, pp. 1093–1097.

[36] P. Terlecki, F. Xu, M. Shaw, V. Kim, and R. Wesley, “On improving
user response times in tableau,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, ser. SIG-
MOD ’15. New York, NY, USA: ACM, 2015, pp. 1695–1706.

[37] K. Morton, R. Bunker, J. Mackinlay, R. Morton, and C. Stolte, “Dy-
namic workload driven data integration in tableau,” in Proceedings
of the 2012 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’12. New York, NY, USA: ACM, 2012, pp.
807–816.

[38] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: Discov-
ering and Exploiting Relationships in Software Repositories,” ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 125–134.

[39] A. Begel, K. Y. Phang, and T. Zimmermann, “WhoselsThat: Find-
ing Software Engineers with Codebook,” ser. FSE ’10. New York,
NY, USA: ACM, 2010, pp. 381–382.

[40] R. Holmes and A. Begel, “Deep Intellisense: A Tool for Rehydrat-
ing Evaporated Information,” in Proceedings of the 2008 Interna-
tional Working Conference on Mining Software Repositories, ser. MSR
’08. New York, NY, USA: ACM, 2008, pp. 23–26.

Jose Ricardo da Silva Junior is a professor
at Instituto Federal do Rio de Janeiro. He re-
ceived his Ph.D. in computer science from the
Universidade Federal Fluminense (UFF) in 2015
and a B.S. in computer science from the Uni-
versidade Estacio de Sa in 2005. His research
interest includes Digital Games, Virtual Reality,
fluid simulation in real time, and repository data
analysis. During his fellowship at the University
of Nebraska, he started to develop Dominoes
with Prof. Anita Sarma. Jose has experience in

computer science with emphasis in GPGPUs, HPC, simulation, and
optimization.

Daniel Prett Campagna is a computer science
graduate student at Universidade Federal Flumi-
nense (UFF). He holds a B.S. (2019) in computer
science from UFF and an information technology
technician degree (2013) from Instituto Federal
do Esprito Santo (IFES). He started his research
career in 2014, working with data analytics over
configuration management repositories. After-
wards, he received a CNPq scientific initiation
grant (2016) to work with data analytics over
undergraduate student transcripts. His research

interests area is in systems and information engineering.

Esteban W. Gonzalez Clua is professor at Uni-
versidade Federal Fluminense and coordinator
of UFF Medialab. He was nominated Young Sci-
entist of the State of Rio in 2009 and 2013 and in
2015 received the nomination of CUDA Fellow.
His main research and development area are
Digital Games, Virtual Reality, GPUs and Visual-
ization. He is today the coordinator of the NVIDIA
Center of Excellence, that is located at the CS
Institute of UFF.

Anita Sarma is an Associate Professor in the
School of Electrical Engineering and Computer
Science, at Oregon State University. She holds
a Ph.D. degree in Computer Science from the
University of California, Irvine. Her research in-
terests lie primarily in the intersection of soft-
ware engineering and computer-supported co-
operative work, focusing on understanding and
supporting coordination as an interplay of people
and technology. She has over 100 papers in
journals and conferences. Her work has been

recognized by an NSF CAREER award as well as several best paper
awards.

Leonardo Gresta Paulino Murta is an Asso-
ciate Professor at the Computing Institute of Uni-
versidade Federal Fluminense (UFF). He holds
a Ph.D. (2006) and a M.S. (2002) degree in
Systems Engineering and Computer Science
from COPPE/UFRJ, and a B.S. (1999) degree
in Informatics from IM/UFRJ. He has published
over 150 papers in journals and conferences
and received two ACM SIGSOFT Distinguished
Paper Award at ASE 2006 and MSR 2019. His
current research interests include configuration

management, software evolution, and provenance.

	Introduction
	Dominoes
	Dominoes Infrastructure
	Dominoes Tiles
	Design Guidelines
	Dominoes GUI

	User Study
	Methodology
	Scenarios
	Participants
	Study Design and Analysis

	Results
	How useful is Dominoes in facilitating exploration of project repositories?
	What types of explorations do participants perform when using Dominoes?

	Limitations

	Member Checking: Industry Professionals' Interview
	Exploration vs. Recommendation
	Related Work
	Conclusion and Future Work
	References
	Biographies
	Jose Ricardo da Silva Junior
	Daniel Prett Campagna
	Esteban W. Gonzalez Clua
	Anita Sarma
	Leonardo Gresta Paulino Murta

