
1

A Survey on Collecting, Managing, and Analyzing

Provenance from Scripts

JOÃO FELIPE PIMENTEL, Universidade Federal Fluminense, Brazil

JULIANA FREIRE, New York University, United States of America

LEONARDO MURTA, Universidade Federal Fluminense

VANESSA BRAGANHOLO, Universidade Federal Fluminense

Scripts are widely used to design and run scienti�c experiments. Scripting languages are easy to learn and use,

and they allow complex tasks to be speci�ed and executed in fewer steps than with traditional programming

languages. However, they also have important limitations for reproducibility and data management. As

experiments are iteratively re�ned, it is challenging to reason about each experiment run (or trial), to keep

track of the association between trials and experiment instances as well as the di�erences across trials, and

to connect results to speci�c input data and parameters. Approaches have been proposed that address these

limitations by collecting, managing, and analyzing the provenance of scripts. In this paper, we survey the state

of the art in provenance for scripts. We have identi�ed the approaches by following an exhaustive protocol of

forward and backward literature snowballing. Based on a detailed study, we propose a taxonomy and classify

the approaches using this taxonomy.

CCS Concepts: • Information systems→Data provenance; • Software and its engineering→ Scripting

languages.

Additional Key Words and Phrases: provenance, scripts, collecting, managing, analyzing, survey

ACM Reference Format:

João Felipe Pimentel, Juliana Freire, Leonardo Murta, and Vanessa Braganholo. 2019. A Survey on Collecting,

Managing, and Analyzing Provenance from Scripts. ACM Comput. Surv. 1, 1, Article 1 (January 2019), 37 pages.

https://doi.org/10.1145/3311955

1 INTRODUCTION

Computing and data have revolutionized science and enabled many important discoveries. At the
same time, the large volumes of data being manipulated, the complex computational process used,
and the ability to run experiments at a high rate create new challenges for reasoning about results
as well as managing the data and computations.
Systematic mechanisms to collect provenance for computational experiments are critical to

address these challenges. Provenance refers to the documented history of processes in the life cycle
of a computational object [95]. In the context of scienti�c experiments, provenance considers input

This work is supported by CAPES, CNPq, FAPERJ, Moore-Sloan Data Science Environment at NYU, AT&T, DARPA, and NSF.

J. F. Pimentel is a CAPES scholarship holder (PDSE/Process No. 88881.131563/2016-01). J. Freire is partially funded by the

Moore-Sloan Data Science Environment at NYU, AT&T, DARPA, NSF awards CNS-1229185, CNS-1405927, and CCF-1533564.
Authors’ addresses: João Felipe Pimentel, jpimentel@ic.u�.br, Universidade Federal Fluminense, Av. Gal. Milton Tavares de

Souza, s/n. Niterói, RJ, Brazil; Juliana Freire, juliana.freire@nyu.edu, New York University, 2 MetroTech Center, Brooklyn,

New York, NY, United States of America; Leonardo Murta, leomurta@ic.u�.br, Universidade Federal Fluminense; Vanessa

Braganholo, vanessa@ic.u�.br, Universidade Federal Fluminense.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0360-0300/2019/1-ART1 $15.00

https://doi.org/10.1145/3311955

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3311955
https://doi.org/10.1145/3311955

1:2 J. F. Pimentel et al.

and output data, environment characteristics, processes applied to input data to derive output data,
intermediate data of these processes, and execution attributes such as duration of each process
and of the experiment itself. Provenance enables scientists to reason about results. For example, to
assess how many trial-and-error paths produced a particular result, how a given result was derived,
and which processes led to a given result [37]. Provenance has many other applications. Scientists
can use provenance to share experiment results with computation and input data [66], allowing
others to reproduce them [21], check integrity and authenticity [81], and track the evolution of
the experiments [106]. Additionally, scientists can analyze provenance to assess data quality, audit,
understand experiments, and detect system dependencies [27, 97].
Scienti�c Work�ow Management Systems (SWfMS) [14, 79, 129, 132] assist users in compos-

ing, executing, and collecting provenance from experiments. These systems glue components as
execution plans in the form of work�ows, which are essentially directed acyclic graphs (DAG)
representing computations [19]. During the execution of these components, SWfMS can transpar-
ently collect their provenance. Despite their ability to de�ne experiments and extensive support
for provenance, a broader adoption of SWfMS has been hampered due to their steep learning
curve and high adoption costs, since they require external tools to be wrapped into the work�ow
engine [98]. Some SWfMS, such as Swift [132], Snakemake [72], and dispel4py [36], proposed
scripting languages for de�ning work�ows but restrict the language to a syntax that supports the
creation of a DAG, and thus lack the �exibility provided by general-purpose scripting languages.
The power of general purpose scripts in gluing components and dealing with heterogeneous,

combined with ease of use, were key factors in their wide adoption by the scienti�c community.
Dubois [33] advocates using scripting languages such as Python, Perl, Matlab, etc., for scienti�c
programming instead of compiled programs. He claims these languages incorporate sophisticated
data structures and give immediate feedback on algorithms. Similarly, Langtangen [73] attributes
the growth of script usage in scienti�c experiments in part due to their simple syntax, ability to
easily to visualize results and combine di�erent tools. Jackson [64] states the importance of Python
for applications in science and engineering due to its simplicity, extensive built-in library, dynamic
typing with support for object-oriented paradigm, and support for integrating externally compiled
code, among other reasons. Finally, some initiatives (e.g., Software Carpentry1) use scripts for
teaching computing skills to scientists.
Compared to SWfMS, one drawback of scripts is the lack of support for provenance collection.

Recognizing this limitation, several approaches have been proposed to collect, manage, and analyze
provenance from scripts. Each one of these approaches proposes di�erent mechanisms for collecting,
managing, and analyzing di�erent types of provenance in scrips with multiple goals. In this work,
we propose a classi�cation taxonomy for approaches that work with provenance from scripts, and
we classify the existing state-of-the-art approaches according to this taxonomy.

Multiple surveys have been written about provenance. Some characterize data provenance in e-
Science [50, 118], provenance in computational tasks in general [37], provenance in databases [123],
data-intensive scienti�c work�ow management [80], and provenance in the light of Big Data [127].
Others focus on more speci�c aspects, such as dynamic steering [84] and provenance analytics [101].
However, none of them consider provenance from scripts. In this paper, we aim to �ll this gap by
providing a comprehensive survey of existing techniques that address di�erent problems related to
provenance for scripts. As we describe below, we have created a comprehensive list of techniques
through forward and backward literature snowballing. We hope that our survey and taxonomy will
serve not only to organize the existing knowledge on provenance for scripts but also as a guide to
help scientists to select tools that best address their speci�c problems.

1http://software-carpentry.org/

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://software-carpentry.org/

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:3

Collection Management Analysis

Scripts Provenance

Fig. 1. Main taxonomy of provenance from scripts.

The remainder of this paper is organized as follows. Section 2 presents the fundamental problems
and techniques for collecting, managing, and analyzing provenance from scripts. We present di�er-
ent types of provenance and discuss techniques for collecting, storing and versioning provenance;
methods that use provenance for reproducibility; and approaches for querying and visualizing
provenance. Section 3 presents a systematic mapping of approaches that collect provenance from
scripts. We classify the collection, management, and analysis techniques of each approach according
to the proposed taxonomy. Finally, Section 4 concludes this survey presenting our �ndings and
open research opportunities.

2 A TAXONOMY FOR PROVENANCE FROM SCRIPTS

In this section, we start by giving a brief overview of related work on capturing provenance for
binary and source code. We then present a taxonomy for script provenance, which as illustrated in
Figure 1, considers techniques for collecting (Section 2.1), managing (Section 2.2), and analyzing
provenance (Section 2.3). We also discuss the applicability of this taxonomy to other provenance
systems (e.g., SWfMS and Database) and their di�erences to scripts (Section 2.4).

Tools for Collecting Provenance for Binary and Source Code. Many approaches have been pro-
posed to collect provenance from binary executions (e.g., PASS [97], ReproZip [21], CDE [56],
DataTracker [120], and others). They collect information about operating system processes, system
calls, �le objects, and network packets as provenance. Since scripts run in binary interpreters, these
approaches can also be used to collect provenance for the execution of scripts. However, as they do
not take the structure of scripts into account, it can be challenging to link the provenance they
collect back to the steps in the script.
Besides using provenance tools, some bene�ts of provenance for scripts (e.g., reproducibility

and comprehension) can be achieved by other tools. Version control systems can store, version,
and distribute experiment de�nitions through repositories. For simple experiments that do not
use environment information nor external tools, this may be su�cient for reproducibility, and
for managing multiple executions. For more complex experiments, virtual machines can provide
isolated environments and improve their reproducibility. While these tools allow scientists to
reproduce experiments, they neither connect output to input nor help users to understand the
experiments. On the other hand, the literate programming paradigm [69] may help understanding
experiments by encouraging users to describe what their code does. This paradigm encourages the
writing of documents that combine, human-readable code descriptions, and computation results.
However, this paradigm does not guarantee the reproducibility, since it does not keep track of
the environment and input data. Some tools that use scripting languages and support literate
programming, such as Jupyter [115] may also bene�t from additional provenance collected from
scripts [109].

2.1 Provenance Collection

Provenance can be described according to di�erent aspects and each aspect requires di�erent
collection mechanisms. Over the past two decades, some classi�cations for provenance have been
proposed for describing such mechanisms. Before discussing the collection techniques in scripts,
we use Figure 2 as an example to compare the previously proposed classi�cation systems and

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 J. F. Pimentel et al.

1 import numpy as np

2 from provtool import where

3 # Precipitation input from Rio de Janeiro

4 input_file = where("p13.dat", "BDMEP -Rio -2013")

5 year = 2013

6 # Classification

7 data = np.genfromtxt(input_file , delimiter=";")

8 total = sum(data [:,3]) # provenance: skip -details

9 classification = "above" if total > 1172.9 else "below"

10 # classification.csv is generated from multiple executions of

11 # this experiment with different inputs. It depends on the input_file

12 with open("classification.csv", "a") as file:

13 file.write("{},{},{}\n".format(year , total , classification))

Fig. 2. Toy experiment that classifies a yearly precipitation data from Rio de Janeiro.

establish one for this document. This example presents a toy experiment that classi�es the yearly
precipitation data from Rio de Janeiro as above average or below average. Note that we use this
example to discuss not only its de�nition but also its trials. A trial is one execution of an experiment.
Cheney et al. [20] classify provenance in why, how, and where. Why-provenance identi�es the

data that were transformed into a new data object. The why-provenance of “classi�cation.csv” in
Figure 2 includes “classi�cation” in line 9, “total” in line 8, “year” in line 5, and the �le “p13.dat” in
line 7 (variable “input_�le”). How-provenance identi�es the process (i.e., all the transformations
that occurred). In Figure 2, the how-provenance includes the “np.genfromtxt” in line 7, “sum” in
line 8, the if expression in line 9, and “format” in line 13. Where-provenance identi�es the location
from which the data object was extracted. Figure 2 identi�es that “p13.dat” was obtained from
BDMEP 2 in line 4.

While this classi�cation system is relevant for database provenance, it may not be appropriate for
scripts. First, the separation between why-provenance and how-provenance is not always clear. The
number “1172.9” in line 9 of Figure 2 could be perceived either as why-provenance, as it is the data
that determines whether the result will be “above” or “below”, or perceived as how-provenance, as
it determines how to classify the data. Second, most scripts do not indicate the where-provenance
of data. One could classify �les locations as where-provenance, however, the �le location is also
encoded in the why-provenance of variables. Finally, this classi�cation system lacks other types of
provenance, related to the structural and environment information of the experiment.
The most common classi�cation for computational tasks distinguishes provenance as prospec-

tive and retrospective [77, 134]. Retrospective provenance combines why-provenance and how-
provenance to provide an understanding of the execution process, identifying what really happened
during the execution. On the other hand, prospective provenance refers to the structure of the
experiment (work�ow, script, input �les), and what is necessary to reproduce it (dependencies,
environment). While the prospective provenance of Figure 2 includes the script itself and the
modules “numpy” and “provtool”, the retrospective provenance includes the execution �ow and the
parts of the script that were executed. In this case, the retrospective provenance indicates that the
value of “classi�cation” is “above”. For the purpose of this survey, this classi�cation system encodes
too much information in the prospective provenance, and lack a di�erent type of provenance.

Cli�ord et al. [24] propose a similar classi�cation with three categories: program structure, runtime

logs, and annotations. In this system, runtime logs correspond to retrospective provenance and
program structure corresponds to the structural part of the prospective provenance. This system

2BDMEP is a meteorological database for teaching and research.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:5

Why How WhereFor databases >Cheney et al. (2007)

RetrospectiveProspectiveZhao et al. (2006)

Runtime LogsStructureAnnotationsClifford et al. (2008)

Definition Deployment ExecutionMurta et al. (2014)

Annotations Definition Deployment ExecutionThis document

Fig. 3. Provenance classification systems.
Collection

Placement

Internal

External

Extraction

Parseable

Executable

Target

Definition

Provenance

Inclusiveness

Inclusive

Exclusive

Necessity

Optional

Mandatory

Annotations

How

Definition

Reading

Parsing

When

Static

Dynamic

Execution

Passive Monitoring

Overriding

Post-Mortem

Instrumenting

Deployment

Snapshot

Continuous

Fig. 4. Expanded Collection taxonomy node of Figure 1.

does not consider environment information. The third category in this system, annotations, refer to
user-made annotations in the provenance or structure, which allow users to explain the program.
In Figure 2, lines 10 and 11 present a provenance annotation in the form of a commentary that
describes the origin of “classi�cation.csv”. Moreover, the “where” function call in line 4 is also an
annotation, as it does not in�uence program execution and describes the origin of “p13.dat”.
Murta et al. [98] borrows terms from software engineering [126] and classi�es provenance for

scripts in three categories: de�nition, deployment, and execution. De�nition provenance represents
the structure of the experiment, such as scripts and input �les. Thus, it is equivalent to the program
structure category proposed by Cli�ord et al. [24]. In Figure 2, de�nition provenance represents
the script itself and “p13.dat”. Deployment provenance represents the execution environment, with
information about the operating system, dependencies, and environment variables. In Figure 2,
deployment provenance represents the modules “numpy” and “provtool”. De�nition provenance
together with deployment provenance corresponds to prospective provenance. Finally, execution
provenance corresponds to runtime logs and retrospective provenance.
Figure 3 presents the aforementioned classi�cation systems for provenance. Note that for the

remaining of this document, we use the classi�cation proposed by Murta et al. [98] due to its explicit
separation of de�nition and deployment provenance, together with the annotations provenance
proposed by Cli�ord et al. [24].
Each provenance type requires di�erent collection mechanisms. While collecting annotations

requires a way to parse annotations, collecting deployment provenance requires obtaining envi-
ronment information with a completely di�erent mechanism. However, collection mechanisms
are not restricted to a single provenance type. Some mechanisms combine di�erent provenance
types. For instance, it is possible to use annotations to identify when and how to collect execution
provenance [8, 86]. In this section, we present di�erent collection mechanisms for each provenance
type. Figure 4 presents the collection taxonomy.

2.1.1 Annotations. According to Cli�ord et al. [24], users can make annotations either on pro-
cedures or on data. Additionally, we identify that some approaches also support annotations on
provenance itself [27]. Annotations provide additional information about objects and users can use

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 J. F. Pimentel et al.

them to point interesting things, understand datasets and programs, and enrich data or provenance
with more information [27]. Additionally, annotations can facilitate collecting other provenance
types [8, 75, 86]. We classify annotations in �ve axes as presented in Figure 4: placement, extraction,
target, inclusiveness, and necessity.
The placement axis classi�es annotations according to their placement as internal or external.

Internal annotations occur inside scripts or data and require some sort of extraction. That is the case
of the annotations that appear in Figure 2. On the other hand, external annotations occur outside
scripts and require a system that supports identifying data elements, through URI, provenance
queries, or temporal information (e.g., annotating the last produced provenance).
The extraction axis classi�es annotations according to their extraction mode as parseable or

executable. Provenance systems can extract parseable annotations statically. However, executable
annotations require their execution. In Figure 2, “where” in line 4 is an executable annotation, as it
is necessary to execute it to get its result. However, the commentaries on lines 10-11 are parseable.
The inclusiveness axis classi�es annotations as inclusive or exclusive. Inclusive annotations

point things of interest and enrich data with more information. Exclusive annotations �lter out
uninteresting data or provenance. The annotations in Figure 2 are inclusive, but the commentary
annotation in line 8 is exclusive, as it indicates that the details of the line are not relevant.

The target axis classi�es annotations according to what they describe. Annotations can describe
the program de�nition, including data and structure, or enrich the provenance itself. All annotations
in Figure 2 describe the program. An example of annotation on provenance would be a tag on the
trial indicating what it did.
Finally, the necessity axis classi�es provenance according to the requirement of using them.

Annotations can be eithermandatory or optional for the systems that collect them. If the provenance
system relies on annotations to collect provenance, the annotations are mandatory. Otherwise, if it
only uses annotations to enrich or �lter the provenance collection, annotations are optional.

2.1.2 Definition Provenance. De�nition provenance refers to the project structure with scripts and
input data. Collecting de�nition provenance can be as coarse-grained as collecting whole �les [26,
27] or as �ne-grained as extracting structure information from scripts to describe them [62, 87, 98].
The easiest way to collect coarse-grained de�nition provenance is to collect whole �les as the

de�nition of experiments. In this sense, version control systems [35] can help with de�nition
provenance collection [27]. Besides the script and input �le content collection, version control
systems also provide authorship, creation timestamp, and script evolution as metadata for �les.
Instead of using version control systems, it is also possible to collect whole �les during execution by
applying execution provenance strategies as we discuss in Section 2.1.4 and collecting the �les as
soon as the execution tries to access it [26, 98]. This is especially valid for scripts since interpreters
read their de�nition before running them. However, this strategy may generate only a partial
de�nition provenance of the project according to the execution path [56].
For �ner-grained collection, it is necessary to statically analyze the structure [62]. Due to the

unpredictability of dynamic languages [130], performing static analysis over scripts may not be
enough to describe them. An alternative to cope with this challenge is to use annotations to describe
the structure [8, 87]. However, this alternative is error-prone and may not represent the script
de�nition. Using static analysis without user input reduces the possibility of errors, but also limits
the extraction of relevant information.
We classify de�nition provenance according to how and when it is collected, as presented in

Figure 4. De�nition provenance can be collected by reading whole �les or parsing �les and extracting
information from them. In Figure 2, if we collect the whole script �le, we will have de�nition
provenance by reading. On the other hand, if we parse the �le and extract information from it, we

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:7

will have de�nition provenance by parsing. Additionally, de�nition provenance can be collected
statically, before or after the execution, or dynamically, during the execution. In Figure 2, it is
possible to collect the script de�nition statically, before the execution, and the de�nition of “p13.dat”
dynamically, when the program executes line 7.

2.1.3 Deployment Provenance. Deployment provenance represents the execution environment. It
refers to the operating system version, interpreter version, environment variables, dependencies
to programs and modules, and all the remaining deployment information that describes the en-
vironment. Most deployment information, such as operating system version, interpreter version,
and machine speci�cation, does not change during execution. Thus, it is safe to collect a single
snapshot of such information. However, other deployment information may not be available at a
given time for a snapshot or may change during execution. This is the case for module and program
dependencies and environment variables. Hence, the strategies we describe in Section 2.1.4 for
execution provenance also apply for continuously collecting such deployment provenance during
execution [21]. However, since this information rarely changes during execution and some script-
ing environments support discovering dependencies without executing the script (e.g., Python’s
modulefinder discovers all imported modules), it is often worth to collect deployment provenance
once, in a snapshot [27, 98] to avoid the overhead of dynamic provenance collection [19]. As
presented in Figure 4, we classify deployment provenance according to its collection frequency,
as snapshot or continuous. In Figure 2, we could collect the modules “numpy” and “provtool” as
deployment provenance continuously during the execution of lines 1 and 2, respectively, or we
could parse the script, extract the import information and collect a snapshot of the modules.

2.1.4 Execution Provenance. Execution provenance refers to the origin of data and its derivation
process during execution. Di�erent approaches collect both data provenance and process prove-
nance at di�erent granularities. Data objects can range from memory bytes to system objects,
passing through arguments, variables, and network packets. On the other hand, the process can
range from individual data operations to operating system processes, passing through variables
operations and function calls. Due to the bene�ts of keeping the data for analysis and reproducibil-
ity [71], some collection mechanisms presented in this section support collecting not only metadata
but also data itself.
Even though execution provenance appears in di�erent granularities, it is possible to collect

all granularities with similar strategies. According to Frew et al. [43], there are three strategies
for collecting execution provenance: passive monitoring, overriding, and instrumentation. The
passive monitoring strategy traces the process execution to collect provenance without requiring
any modi�cations to the code. The overriding strategy replaces portions of the executed code with
instrumented versions. Finally, the instrumentation strategy requires users to instrument their code
explicitly with annotations or function calls. We identify a fourth strategy: post-mortem, which
infers execution provenance after the execution [27, 61, 86].

Each one of these strategies has advantages and disadvantages. Passive monitoring and overriding
are highly automated strategies but produce too much provenance, which a�ects the performance
and overwhelms users. Instrumentation and post-mortem, on the other hand, require users to
specify what they want to collect, being error-prone and producing less provenance. Braun et al. [13]
separate provenance systems into observed and disclosed. Systems that apply passive monitoring or
overriding are observed systems since they observe the execution and collect provenance. Systems
that apply post-mortem or instrumentation strategies are disclosed systems since the users need to
specify what they want to collect with annotations. Figure 5 presents an axis with all strategies.
In the axis, the higher the automation, the more overwhelming its provenance will be. Note that
the post-mortem strategy requires more automation than instrumentations. It occurs because

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 J. F. Pimentel et al.

Passive

Monitoring
Overriding

Post-

Mortem
Instrumenting

Observed DisclosedAutomation

Overwhelming
User Intrusion

Errors

Fig. 5. Observed and disclosed strategies.

post-mortem systems automatically infer provenance from results instead of having to specify each
provenance collection.
The passive monitoring strategy uses a tracer to observe the execution and log all low-level

events during the execution. Since tracers log all low-level events, this strategy imposes the
biggest performance overhead, but it is also able to collect more provenance data. For scripts, it
is either possible to trace interpreters’ binaries [56] or to use language-speci�c tracers to collect
provenance [8, 98]. This survey focuses on the latter. In Figure 2, the passive monitoring could
trace all executed lines and collect the provenance in each one of them.
The overriding strategy automatically instruments the code to collect provenance. Provenance

tools that employ this strategy de�ne code patterns to �nd (e.g., function calls, �le openings, variable
assignments, and others) in the interpreter’s binary or script and replace the original code with
an instrumented one that collects provenance. In Figure 2, the overriding strategy could replace
the functions that open �les (e.g., “genfromtxt” and “open”) by instrumented versions that collect
provenance.
After overriding the code or tracing events, it is desirable to build a provenance DAG, which

allows answering lineage queries. It can be accomplished by observing simple relationships, such
as caller-callee function and parent-child process, and observing input and output data in each
process. Another way to build a provenance DAG is to use a more robust technique such as dynamic
program slicing or dynamic taint tracking to follow the actual data derivations that occur during
executions. While the former approaches produce more false positives (i.e., �nd “provenance” that
does not in�uence the results), the latter approaches produce more false negatives (i.e., do not
�nd all the provenance that could in�uence the results). This occurs because dynamic program
slicing and dynamic taint tracking just observe what occurred and not what could occur in other
conditions [56]. Note that these robust techniques are also more expensive due to the necessity of
following all dependencies at �ne-grain.
The post-mortem strategy infers provenance from execution results after the executions. In

order to collect this type of provenance, users need to specify the locations of output data and how
it relates to input data. One way to apply the post-mortem strategy is to store all data �les in a
speci�c directory and collect all �les before and after the execution. This method considers new or
changed �les as output �les and unchanged �les as input �les [27]. Alternatively, it is possible to
read all �les in a directory after the execution and infer �le provenance (i.e., which �le derived
from which �les) through semantic similarities and timing information [61]. Another way to apply
the post-mortem strategy is to use annotations [86] to collect the relationship between input data
and output �les. In both cases, users need to change their scripts to comply with the post-mortem
rules, by using only the data directory or the annotation syntax.
The post-mortem strategy can also be joined to other strategies to collect provenance. For

instance, it is possible to track process openings with the overriding strategy and collect �les
before and after each process execution, comparing them with the post-mortem strategy [1]. In
Figure 2, the post-mortem strategy could be used to collect the resulting “classi�cation.csv” after
the script execution and associate it with the input �le “p13.dat”. Note that this strategy could also
be used to collect implicit provenance (i.e., provenance data that is not explicitly referenced by the
script [83]). In Figure 2, suppose the “where” function in line 4 extracts and reads “p13.dat” from a

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:9

SequenceTrial ID Intention

Management

Distribution Reproducibility VersioningStorage

MemoryDatabase

Relational

Graph

NoSQL

File

Interoperable

Log

Logic

Graph

Content DB

RemoteLocal

Interoperable

Log

Logic

Graph

Content DB

Proprietary Proprietary

Repository

Web

Fig. 6. Expanded Management taxonomy node of Figure 1.

zip �le, “precipitation.zip”. The post-mortem strategy would be able to collect it and indicate that
“classication.csv” derives from it.

Finally, the instrumentation strategy requires users to change their code specifying what they
want to collect. Users can either annotate their code with special structures, such as decorators [8]
or invoke library functions [12, 40]. This strategy not only imposes an extra e�ort for users but
can also result in instrumentations that do not represent the scripts after code maintenance or
due to human error [8, 87]. For this reason, PrIMe [91] has been proposed as a methodology for
analyzing applications and determining which points should be instrumented, minimizing errors.
Alternatively, the instrumentation strategy can also be used together with the aforementioned
overriding and passive monitoring strategies to specify when to start collecting provenance and
how to enrich the collected provenance [75]. In Figure 2, the “where” call in line 4 is an application
of the instrumentation strategy.

2.2 Provenance Management

Collecting provenance data is not enough for provenance tools. It is desirable to provide manage-
ment features related to storage, distribution, versioning, and reproducibility. In this section, we
present provenance management requirements and approaches. Figure 6 presents the management
taxonomy.

2.2.1 Storage. Provenance can be stored in database systems, transient memory, or �les. However,
the storage choice deeply relates to provenance collection and usage goals. File systems (e.g.,
archives, version control systems) are usually employed for reproducibility and de�nition prove-
nance storage [27]. On the other hand, database systems work better for provenance comprehension
and for storing other types of provenance due to the possibility of querying and the capability
of storing non-�le artifacts, such as function calls, variables, and environment variables [62, 98].
Although �le systems are also viable for such non-�le data, they require the provenance tools to
implement their own serialization mechanisms [54, 103, 121].
Storing �les in �le systems and archives is straightforward. It just requires copying �les from

original paths to adjusted ones inside the storage system. However, since some scripts write in the
same �les more than once during its execution, it is often desirable to avoid collisions and collect
more than one version of each �le. One way to accomplish this is to de�ne naming rules based on
hashes of �les content, and store �les in a content database. In this case, part of the hash is used to
de�ne the name of the directory and another part to de�ne the �lename, with an external index to
relate the original �le name and version to its hash [27, 54, 98]. It is necessary to split the hash into
di�erent parts for directories and �lenames to avoid OS limitations on the number of �les that can

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 J. F. Pimentel et al.

be stored in a directory [98]. Such collision avoidance approaches are not necessary, should the
collection keep only the most recent versions [90].

As mentioned before, database systems have advantages over �le systems for supporting non-�le
artifacts and supporting queries. The chosen database system for each provenance tool also varies
according to the necessities. Tools that intend to support simple queries use embedded relational

databases such as SQLite [27, 62, 98]. However, due to the necessity of transitive closure queries
and the unintuitive support for recursive queries in SQL, some of these tools also support exporting
provenance to other formats, such as Prolog/Datalog [98]. This necessity of transitive closures also
motivated some tools to use graph databases and other NoSQL databases right away [12, 17, 43, 51,
82].
The di�erent nature of provenance artifacts indicates the need for combining di�erent storage

systems into a single tool. For instance, it is possible to store actual �les in the disk or version
control system and their relationships in a relational database [27, 98].

Using a storage system for provenance is not mandatory. Provenance tools can store provenance
in a small set of documents, such as RDF, XML, JSON, Prolog/Datalog, non-structured log, among
others [8, 43, 75, 87, 90, 121]. Other tools (or the same tool) might open these documents for
analysis [75, 120], reproducibility [121], or querying [87]. Additionally, provenance might not be
stored at all, should the application consume it at run-time [117]. In this case, provenance stays
in transient memory. Moreover, instead of providing a storage system, an approach might output
provenance in the standard output or distribute it through remote network connections and expect
other applications to deal with the storage [12, 124].

2.2.2 Distribution. Besides storing provenance data, another provenance management issue is on
distributing provenance to other people or systems for analysis and reproducibility. Distributing
provenance for analysis allows tools to implement standalone collection mechanisms [124] and
transfer the analysis responsibility to specialized tools. Distributing provenance for reproducibility
reduces the burdens of making computation experiments reproducible across platforms [21].
Provenance tools that store provenance at a small set of �les [8, 43, 75, 87, 90, 121] support

distribution by simply sending the �les to someone else. Other tools need to process provenance
data and produce the desirable �le format [98]. However, the desirable �le format depends on its
application. Logic programming formats (e.g., Prolog and Datalog �les) support running queries
with transitive closures [87, 98]. Graph formats (e.g., GraphViz �les) allow visual analysis [1, 105].
Provenance-speci�c formats (e.g., OPM and PROV �les) support interoperability among provenance
tools and usage of other tools specialized in provenance querying and visualization [90]. Finally,
it is also possible to distribute provenance as executable logs [90], which are representations of
experiments without loops, conditions, and other control �ows.

The Open ProvenanceModel (OPM)was proposed as the result of Provenance Challenges with the
goals of supporting digital provenance representation of anything, with coexisting multiple levels
of description, and a format that could be exchanged among systems [94]. The OPM speci�cation
heavily in�uenced the W3C PROV standard [96]. Both models are extensible and provide similar
concepts and relationships for entities, activities, and agents. The relationships indicate whether an
activity used or generated an entity; whether an entity derived another entity; whether an activity
was associated with an agent; among others [25, 92].

All these formats provide distributable provenance but do not deal with the problem of provenance
transferring. Thus, we de�ne them as local distribution. RDFa [5] supports embedding some of
these formats (e.g., PROV) in web pages. A user interested in embedded provenance can use RDFa
parser to extract it. However, not all distributable provenance can be embedded. In order to support
provenance transferring, some approaches propose sending the provenance to remote servers.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:11

These servers appear both as web servers designed to receive and store provenance data [12, 52]
and as repositories designed to share provenance and experiment de�nitions, encouraging the reuse
of experiments of other people [66]. Version control system repositories [35] play a similar role in
distributing experiments. However, they usually only distribute script de�nitions and they make it
hard to search for other types of provenance. On the other hand, such systems provide versioning
for the experiments.

2.2.3 Reproducibility. Reproducible research is essential for science. In the scienti�c method,
scientists con�rm or refute hypotheses based on testable and reproducible predictions. The lack
of reproducibility prevents other scientists to validate research �ndings and expand its horizons
with new data [9]. With the advance of computers, the amount of data used in research got bigger,
and it became unfeasible to reproduce research just with the data reported in papers [31]. This
situation leads to a credibility crisis [63].
In response to the credibility crisis, scientists proposed sharing not only �ndings but also

data, programs, and environments [23], making data as transparent and available as possible [58].
Provenance comes to play in these proposals due to its capability of representing data, data
processing with intermediate transformations, and environment information.

Scientists can use provenance to comprehend third-party experiments and reproduce behaviors in
new implementations and even compare di�erent executions to check if a new trial could replicate
the results of the previous one [27, 57].

According to Drummond [32], just replicating experiments results is not good science, as it just
reports the same result originally reported and is only able to detect frauds. However, replicating
experiments could be an important step towards reproducibility, since it allows scientists to check
whether they are using the same proposed data transformations and tools before trying new data.

In this document we do not propose a classi�cation for reproducibility, thus we consider all
approaches that aim at supporting replication, reproduction, or repetition of experiments as tools
that support reproducibility.

2.2.4 Versioning. Many experiment results motivate repetitions in their life cycle [85]. For instance,
when a trial is inconclusive, scientists may repeat the cycle to adapt hypotheses and tasks. When
scientists con�rm a hypothesis for a restricted population, they may repeat the experiment for a
broader one. Similarly, when they refute a hypothesis for a broad population, they may verify it for
a restricted one. Moreover, some scientists design experiments to run iteratively, alternating the
input data and some experimental activities. For instance, this occurs in simulations with parameter
sweeping. In these simulations, each iteration deals with a combination of input parameters. In all
the situations that motivate repetition, the knowledge is cumulative and scientists can use data
from previous trials in further analyses. Some experiments may even use the output of a trial (i.e.,
one execution of an experiment [106]) as another trial's input. Finally, some scientist may desire to
rollback to previous versions of the experiment with interesting results.

While collection mechanisms presented in Section 2.1 collect provenance of a single trial, these
mechanisms leave the experiment evolution out. However, as the experiment evolves, its trial
provenance evolves as well. Thus, in order to keep all trial provenance, it is necessary to version it
for di�erent executions.
In its essence, versioning provenance requires just to provide a way for separating provenance

storage for each execution. Using a trial identi�cation for collected provenance [98, 121] is su�cient
to identify each execution. Ideally, such systems should apply optimizations to reduce storage
overhead and facilitate analyses.

However, just specifying trial versions is not enough to understand the evolution. Suppose that
a trial uses a �le created by a previous trial as input. In this situation, the provenance tool should

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 J. F. Pimentel et al.

Analysis

Visualization ComparisonQuery

Place ProvenanceDataType

Process Graph

Data Graph

Combined Graph

Completeness

Complete

Clustering

Filtering

Log

SpecificGeneric

Internal

External

Fig. 7. Expanded Analysis taxonomy node of Figure 1.

consider the provenance of the �le in the previous trial for the new trial. Having just unordered
versions does not allow one to identify which version was the previous one. Thus, in addition to
versions, it is necessary to track provenance evolution in the form of version relationships [27, 106].

Trial relationships represent how the experiment evolves by indicating situations such as sequen-
tial trial executions or re-executing previous trial versions. This way, they improve provenance
across trials and, consequently, help during analysis. Hence, provenance evolution allows users
to not only analyze the latest script provenance but also to compare it to previous moments and
improve their understanding of the whole experiment. Note that the trial relationships can be as
simple as the trial sequence [98], or as complete as indicating the evolution intention [106].

While provenance evolution has been applied to SWfMS [14], it has not received much attention
for scripts. A possible reason is the wide usage of version control systems to track the evolution
of script de�nitions [35], which �lls part of the necessity of evolution tracking. Note that prove-
nance tools that use version control systems for storage also support trial provenance evolution
tracking [27, 121].

2.3 Provenance Analysis

Provenance analysis aims at supporting the comprehension of data and processes. Analyzing
provenance involves visualizing and querying provenance data. Provenance visualizations provide
an overview of what happened in a trial and what data derivations occurred. Provenance queries
obtain lineage and other metadata from data objects. This section presents di�erent approaches for
querying, visualizing and comparing provenance. Figure 7 presents the analysis taxonomy.

2.3.1 �ery. Many approaches use generic languages for querying provenance, such as SQL [27,
98], SPARQL [18, 82], XQuery [12], Prolog [98], and Datalog [87, 133]. Even though these logic
programming languages (i.e., Prolog and Datalog) are not proper query languages, deductive
databases use these languages as query languages due to their increased power in comparison to
conventional SQL [111]. In the context of provenance, this increased power helps with recursive
queries and transitive closures. While SQL supports recursive queries with transitive closures,
those queries are known to be ine�cient and hard to write [98]. Logic programming languages
intuitively handle recursion, on the other hand.

Generic query languages are useful to users who know their syntax but can be complicated to deal
with structured provenance data [37]. Additionally, the lack of knowledge about the internal storage
structure increases the di�culty of provenance utilization. Thus, some speci�c query languages
have been proposed for provenance, such as OPQL [78], VQuel [16], and other proprietary ones for
speci�c systems [75].
OPQL [78] was designed to run specialized queries on provenance modeled with the Open

Provenance Model (OPM). Its queries combine basic set operations (union, insert, and minus) and
graph navigation constructs that support exploring transitive closures or single edges of OPM.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:13

VQuel [16] was proposed as a generalization of the Quel [122] language with features of
GEM [131] and path-based query languages. It has the goals of traversing version-level provenance
information, querying data contained in a version, and comparing it to other versions. While VQuel
focuses on the provenance of versions, it can also be used to query provenance evolution, should
the content of each version be trial provenance.

While most existing querying languages focuses on o�ine analysis (i.e., after execution), prove-
nance querying can safely occur online (i.e., during execution) to obtain derivations up to a
determined moment [84]. Querying online provenance externally helps to identify problems as
soon as possible in long-running programs and stop the execution before waiting a long time for
their completion [25]. Querying online provenance internally (i.e., by the program that is producing
it) improves the usage of intermediate data. Intermediate provenance data allows caching results
and identifying di�erences between executions to invalidate caches [54].

2.3.2 Visualization. As we mentioned before, some approaches export provenance as interoperable
�les (e.g., OPM, PROV) for visualization in external tools [90, 124]. However, since provenance can
be tight to a domain or not exported to interoperable �les, some approaches that collect provenance
o�er their own internal visualization mechanisms [1, 34, 62, 70, 75, 87, 98].
Most approaches visualize provenance either as logs [51] or as directed graphs [1, 34, 62, 70,

75, 87, 98]. Such graphs present data transformations, data communication between activities,
or activities sequence. Di�erent graph views can represent the same provenance information
according to the analysis goal [87]. Data-centric views present data as nodes and activities that
apply transformations over data as edges. Process-centric views present activities as nodes and data
transference between activities as edges. Finally, combined views present both data and activities as
nodes and their relationships as edges. Combined views often include authorship as well [94].
Some complete provenance graphs are overwhelmingly big. Thus, it is necessary to summarize

provenance through clustering or �ltering to support visualization analysis in such graphs. Prove-
nance clustering combines similar nodes and edges in the provenance graph. It can be performed
manually [34, 62] or automatically [70, 98]. Manual approaches require users to select which nodes
they want to combine into a single node. Automatic approaches use similarity measures for cluster-
ing. The similarity measures might consider provenance sequencing [70] or not [98]. Approaches
that do not consider sequencing can break acyclic constraints of provenance during summarizations.
These constraints can be purposely broken to represent script cycles in visualizations [98]. Dynamic
visualization tools can represent clusters as collapsible nodes [75].

For provenance �ltering, it is possible to use query languages described in Section 2.3.1. Some
query languages are distributedwith provenance browsers that support provenance visualization [6].
Alternatively, it is possible to �lter provenance with simple prede�ned �lters, such as temporal
�lters for selecting provenance data produced in a speci�c time range [70].
Graphs are not the only way to visualize provenance. Sankey Diagrams are an alternative that

supports visualizing the magnitude of �ows in activities network [59]. Visualizing the magnitude
of �ows helps to determine important activities based on data�ow. Among the existing approaches
that support provenance visualization, some are coupled with the infrastructure that collects the
provenance [1, 62, 75, 87, 98] and others intend to be generic for any provenance application [59, 70].
Generic approaches use interoperable provenance formats (e.g., OPM, PROV), as discussed in
Section 2.2.2. They have the advantage of supporting provenance from di�erent sources. Coupled
approaches read provenance directly from the provenance storage system. They have the advantages
of considering collection characteristics and improving visualization semantics.

2.3.3 Comparison. Some provenance approaches support comparing data to present di�erences
between results [27] and for cache invalidation [55]. Others support comparing provenance graphs

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 J. F. Pimentel et al.

to understand di�erences between executions [10, 38]. Since comparing general graphs is equivalent
to the sub-graph isomorphism problem, which is NP-complete [119], some approaches reduce the
complexity of the comparison by using the system context. The system context can indicate the lack
of loops in graphs [38], the guarantee of well-formed loops for trials written in SPFL (series-parallel
graph overlaid with well-nested forking and looping) [10], and other information that is speci�c to
each provenance system.

2.4 Applicability to Other Provenance Systems

We designed the proposed taxonomy for scripts, but some of the described features also apply to
other approaches that collect, manage, or analyze provenance in non-scripting languages [22, 52],
binary program executions [21, 28], operating systems [57, 97], scienti�c work�ow management
systems [38, 79, 129], and database systems [20]. In this section, we contrast these systems to scripts
and compare the applicability of the taxonomy.

Usually, Non-Scripting Languages (also known as system programming languages) are more
verbose, with variable declarations, data and code segregation, and well-de�ned substructures,
procedures, and components [102]. Provenance collection in these languages bene�ts from more
informative static program analysis techniques than scripts [22]. For instance, since components
are known in advance, it is easier to collect libraries as a deployment provenance snapshot, during
the compilation. Similarly, parsing the source code to collect the de�nition provenance before
the execution provides more information on types and dependencies than scripts provide. This
information can be used to ease the execution provenance collection by overriding fewer parts of
the program. In contrast, scripts are less verbose and designed for gluing distinct components with
non-informative interfaces. Thus, scripts require more dynamic e�ort in the provenance collection.
When collecting provenance from Binary Program Executions, the program is dissociated

from the source code de�nition [21, 28]. On the one hand, it allows users to collect provenance
from any executable. On the other hand, it hinders the understanding and limits the provenance
collection. For instance, annotations can only occur externally, since the collection does not have
access to the source code for extracting internal annotations. As a consequence, the instrumentation

strategy cannot be used for binary execution provenance collection. Additionally, the de�nition
provenance collection cannot rely on parsing the source code. Thus, binary approaches use the
reading strategy to collect input/output �les and executable �les.
Operating Systems provenance is very similar to binary provenance and all binary restrictions

apply. Approaches of this category collect provenance of everything that is running in the operating
system. Thus, associating the execution provenance to source code de�nitions is even harder.
Moreover, since the collection occurs during the OS execution, both the de�nition and the deployment

provenance are collected dynamically and continuously during the execution. Operating systems
also imposes challenges on provenance storage due to the presence of the database on the operating
system. Hence, the system must avoid collecting provenance of it to avoid recursive provenance.
Additionally, the provenance of all processes imposes scalability issues on the storage and analysis.

Scienti�c Work�ow Management Systems collect work�ow activities as de�nition prove-
nance by statically parsing the work�ow structure [38, 79, 129]. It allows their annotations to target

only the provenance instead of the de�nition. Since SWfMS de�ne their own execution machinery,
they do not employ the overriding strategy nor the instrumentation strategy for execution prove-
nance collection. Instead, they use only the passive monitoring strategy for explicit provenance and
the post-mortem strategy for implicit provenance.

An important distinction between SWfMS and scripts is the granularity of collection. Ordinarily,
SWfMS collect only activities and data passing between activities. Most of the time, these activities
are black-box operations and the SMfMS must assume that activities outputs derive from all the

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:15

inputs. In scripts, activities can be expressions evaluations, function calls, and even script executions.
Scripts express not only these activities invocations but also their de�nitions. This allows scripts
to treat activities as white-box operations and obtain more precision. Note, however, that not all
activities are white-box operations in scripts. Calls to compiled or built-in functions are black-box
operations. Additionally, some SWfMS support sub-activities [129], and some approaches propose
combining SWfMS to external tools to �ll the black-boxes [15] (e.g., using a scripting approach to
collect provenance from a work�ow activity that invokes a script).
Another distinction between SWfMS and scripts is the mutability of the data [110]. Scripts

can have mutable complex data structures. The mutability imposes an additional challenge in
the collection. Suppose two activities apparently receive the same data structure, but only one
of them performs changes in the data. In this case, the order in which the activities are executed
in�uences the results. Additionally, nested data structures in scripts hinder the understanding of
the provenance and require more advanced collection strategies.
Database Systems have three types of provenance: why, how, and where [20]. Our taxonomy

does not model where-provenance, as this information is very rare in non-database systems and
appear as part of other provenance types in scripts (see the discussion in Section 2.1). Additionally,
we combine both why-provenance and how-provenance into the execution provenance, since it is
harder to dissociate these concepts on scripts. Usually, database systems do not collect de�nition nor
deployment provenance, since they are interested in the provenance of the stored data. Annotations
are parseable and target the provenance. Thus, database systems do not use the instrumentation

strategy for why and how provenance collection. Naturally, database systems use their own storage
for provenance, but some approaches also support exporting it to other formats. Finally, versioning
is di�erent in these systems, since the concept of trial does not apply for database systems.

3 STATE-OF-THE-ART TOOLS ON PROVENANCE FROM SCRIPTS

We conducted a systematic mapping to identify the state-of-the-art tools on provenance from
scripts. According to Petersen et al. [104], the main goals of a systematic mapping are producing
an overview of a research area, categorize existing work, and explore tendencies. In our case, the
systematic mapping has the goal of identifying tools that deal with provenance from scripts and
categorize them according to their goals, and how they perform provenance collection, analysis,
and management. Thus, we de�ned the main research question and �ve secondary questions:

• RQ1:Which provenance tools deal with provenance from scripts?
• RQ1.1: For what purpose do these tools collect provenance?
• RQ1.2:Where and when were these tools published?
• RQ1.3: How do these tools collect provenance?
• RQ1.4: How do these tools manage provenance?
• RQ1.5: How do these tools analyze provenance?

We applied forward and backward snowballing to discover relevant tools [128]. The snowballing
method starts with a start set of papers related to the systematic mapping research questions.
Forward snowballing consists in obtaining papers that cite papers in the current set and including
them in the set if they match the inclusion criteria. Similarly, backward snowballing consists in
obtaining papers in the references list of papers in the current set and including them in the set if
they match the inclusion criteria.

In our case, we de�ned the inclusion criteria as peer-reviewed documents (e.g., papers, theses)
in English with approaches that collect, manage, or analyze provenance from scripts directly. We
excluded approaches with indirect support for provenance (e.g., virtual machines for deployment

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:16 J. F. Pimentel et al.

provenance) and approaches for provenance in non-scripting languages (e.g., Java [52]), generic bi-
nary executables (e.g., ReproZip [21], DataTracker [120]), or OS (e.g., PASS [97], Burrito [57]). While
binary and OS-based approaches support collecting script provenance by monitoring interpreters,
we left them out because of their dissociation between script de�nition and execution.

We followed the guidelines proposed byWohlin [128] for de�ning the start set of our snowballing
(i.e., use Google Scholar to avoid bias towards a publisher; and obtain a diverse and big enough
start set). We searched "script provenance" on Google Scholar, and we selected papers based on our
inclusion criteria. We obtained 9 papers [29, 43, 44, 62, 75, 82, 86, 87, 98] related to 7 approaches
and we stopped on page 5 after the page did not contribute with new results. These papers were
published on 2 distinct journals and 3 distinct conferences.

Then, we exhaustively alternated series of backward and forward snowballing iterations with the
help of a snowballing tool (https://joaofelipe.github.io/snowballing/) until no more related papers
were obtained. We �nished the process on March 6th, 2017. Figure 8 presents the process and the
amount of related and found papers in each step. Note that this �gure does not represent the actual
process, but summarizes it satisfactorily. The actual process was performed over several months
with many intermediary forward snowballing steps. For instance, the �rst forward snowballing
on July 24th, 2016 found only 24 papers that cited the �rst noWork�ow paper [98], according
to Google Scholar. In the latest iteration, there were 34 citations for this paper. Thus, instead
of presenting the whole snowballing process in Figure 8, we present only what it would be if
we had performed the whole snowballing on March 6th, 2017, with big backward and forward
iterations, as described by Wohlin [128]. Note that the last two iterations were applied over the
s4 set, as they did not include related papers. During this process, we visited 1345 references
and we ended up with 53 papers referring to 27 approaches. In the remaining of this section, we
describe all these approaches. Figure 9 presents the work we selected in the snowballing. The
full citation graph with the reasons some work do not match the inclusion criteria is available at
https://dew-u�.github.io/scripts-provenance/.

After selecting the papers and classifying the approaches they describe according to the taxonomy
described in Section 2, we contacted the authors of each approach to con�rm the classi�cation. We
received answers from authors of 19 approaches. This feedback made us realize that some papers
are part of bigger systems [46–49, 93]. Additionally, some authors indicated the inclusion of newer
papers of their approaches [67, 76, 108].

Table 1 presents the �nal selection of approaches with their papers. In this table, we categorized
the approaches by their usage goals for provenance to answer RQ1.1 (i.e., for what purpose do
these tools collect provenance?). We identi�ed �ve usage goals by reading the paper's motivations:
caching, comprehension, framework, management, and reproducibility. For approaches that did
not clearly specify the usage goals, we inferred by the proposed features.
The caching category represents approaches that use provenance for cache invalidation and

that support reusing previous results. The comprehension category represents approaches that use
provenance for understanding experiments, debugging scripts, documenting processes, checking
compliance with standards, and auditing processes. The framework category represents approaches
that propose generic mechanisms that allow others to implement their provenance systems. The
management category represents approaches that use provenance for managing experiments.
Finally, the reproducibility category represents approaches that support reproducing, repeating,
and comparing repetitions of experiments.
The most supported usage goals in the approaches are comprehension, reproducibility, and

management, in this order. We also identi�ed the main usage goal described in the papers. In this
case, the order is comprehension, management, and reproducibility. Colors in Figure 9 represent
the main usage goals of the approaches.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://joaofelipe.github.io/snowballing/
https://dew-uff.github.io/scripts-provenance/

A
Su

rvey
on

C
ollectin

g,M
an

agin
g,an

d
A
n
alyzin

g
P
roven

an
ce

from
Scrip

ts
1:17

start

backward1

s0

use

found: 119

related: 10 forward1

s1

use

found: 360

related: 28 backward2

s2

use

found: 675

related: 3 forward2

s3

use

found: 110

related: 3
backward3

s4

use

found: 68

related: 0

forward3
use

found: 4

related: 0

gen

type: Set

length: 9

gen

der

type: Set

length: 19

gen

der

type: Set

length: 47

gen

der

type: Set

length: 50

gen

der

type: Set

length: 53

Fig. 8. Snowballing provenance.

Caching Comprehension Framework Management Reproducibility

J.Sci. Stat. Comput.

Becker
and Cha
mbers

SSDBM

ESSW

ESTC

ES3

Thesis

ES3

IPAW
Bochner
, Gude,
and Sch
reiber

CCPE

ES3

IPAW

ES3

NBIS

Astro-
WISE

IPAW

Star
Flow

IPAW

ES3

IPAW

IncPy

IPAW

CXXR

TaPP

Star
Flow

SSDBM

ES3

Procedia

VCR

ISSTA

IncPy

eSoN

Astro-
WISE

JSM

CXXR

Comp. Stat.

CXXR

CiSE

Sumatra

Thesis

Guo's
Thesis

TaPP

CPL

IPAW

CXXR

TaPP

SPADE

EDBT

Prove
nance
Curious

Thesis

Prove
nance
Curious

TGRS

Prove
nance
Curious

FNINF

Lancet

TaPP

RData
Tracker

IPAW

RData
Tracker

IPAW

no
Work
flow

Thesis

CXXR

CLOUD

WISE

Thesis

WISE

JIB

WISE

TaPP

YW*NW

OSR

versuch
ung

AutoML

Sacred

IJDC

Yes
Work
flow

TaPP

Yes
Work
flow

Neuroscience

pypet

TaPP

no
Work
flow

ICSC

WISE

IPAW

SisGExp

eSoN

Datatra
ck

FNINF

pypet

IPAW

Michael
ides et
al.

SciPy

Magni

IPAW

no
Work
flow

IPAW

no
Work
flow

IPAW

YW*NW

CHI

Varioli
te

1988 2001 2004 2005 2008 2009 2010 2011 2011 2012 2013 2014 2015 2015 2016 2016 2017

Fig. 9. Selected papers in Snowballing.

IPA
W

Ta
PP

Th
es
is

SS
DB
M

eS
oN

CiS
E

FN
IN
F

Au
toM

L
CH
I

CL
OU
D
ED
BT

ES
TC

IC
SC

ISS
TA JS

M
NB
IS

PO
LIC
Y
Sc
iPy

VL
DB

VL
HC
C

us
eR

CC
PE

Co
mp
.

Sta
t. IJD

C

Inf
orm

ati
cs

J.S
ci.

Sta
t.

Co
mp
ut.
JIB

Ne
uro
sc
ien
ce
OS
R

Pr
oc
ed
ia
TG
RS

Place

0

5

10

C
ou
nt

Conference
Journal
Thesis

Fig. 10. Distribution of work by publishing location.

A
C
M

C
o
m
p
u
t.
Su

rv.,V
o
l.
1,N

o
.
1,A

rticle
1.
P
u
b
licatio

n
d
ate:

Jan
u
ary

2019.

1:18 J. F. Pimentel et al.

Table 1. Selected approaches with provenance support: main and secondary goals. Labels in secondary goals
column refer to goals: Cache—Caching; Compr—Comprehension; Frame—Framework; Manag—Management;
Repro—Reproducibility.

Approach Main goal Secondary goals

Cache Compr Frame Manag Repro

Astro-WISE [99, 100] Framework ✓ ✓ ✓ ✗ ✓

Becker and Chambers [11]3 Comprehension ✗ ✓ ✗ ✗ ✓

Bochner et al. [12] Comprehension ✗ ✓ ✓ ✗ ✗

CPL [82] Framework ✗ ✗ ✓ ✗ ✗

CXXR [112–114, 116, 117]4 Comprehension ✗ ✓ ✗ ✗ ✗

Datatrack [34] Management ✗ ✓ ✗ ✓ ✗

ES3 [39, 41–44, 125]4 Comprehension ✗ ✓ ✗ ✗ ✗

ESSW [40]4 Management ✗ ✓ ✗ ✓ ✗

IncPy [53–55] Caching ✓ ✗ ✗ ✗ ✗

Lancet [121] Reproducibility ✗ ✓ ✗ ✓ ✓

Magni [103]4 Reproducibility ✗ ✗ ✓ ✗ ✓

Michaelides et al. [90]4 Reproducibility ✗ ✓ ✗ ✗ ✓

noWork�ow [98, 106, 107, 109] Comprehension ✗ ✓ ✗ ✓ ✓

Provenance Curious [60–62]4 Comprehension ✗ ✓ ✗ ✗ ✗

pypet [88, 89] Management ✗ ✗ ✗ ✓ ✗

RDataTracker [74, 75] Comprehension ✗ ✓ ✗ ✗ ✗

Sacred [51] Management ✗ ✓ ✗ ✓ ✗

SisGExp [26] Management ✗ ✓ ✗ ✓ ✓

SPADE [124] Comprehension ✗ ✓ ✗ ✗ ✓

StarFlow [7, 8] Management ✓ ✓ ✗ ✓ ✓

Sumatra [27]4 Reproducibility ✗ ✓ ✗ ✓ ✓

Variolite [68] Management ✗ ✓ ✗ ✓ ✓

VCR [45]4 Reproducibility ✗ ✓ ✗ ✗ ✓

versuchung [30] Reproducibility ✗ ✓ ✓ ✗ ✓

WISE [1–4] Comprehension ✗ ✓ ✗ ✗ ✗

YesWork�ow [86, 87] Comprehension ✗ ✓ ✗ ✗ ✗

YW*NW [29, 105] Comprehension ✗ ✓ ✗ ✓ ✓

Main Goal / Total 1 / 3 11 / 23 2 / 5 7 / 11 6 / 14

We grouped papers according to their publishing place to answer RQ1.2 (i.e., where and when
were these tools published?).We identi�ed 42 papers published in conferences, 14 articles in journals,
and 5 theses. Figure 10 presents the distribution of work by publishing location. International
Provenance and AnnotationWorkshop (IPAW) andWorkshop on Theory and Practice of Provenance
(TaPP) seem to be the preferred conferences. Computing in Science & Engineering (CiSE) and
Frontiers in Neuroinformatics (FNINF) seem to be the preferred journals.
This section is structured in four subsections. Section 3.1 seeks to answer RQ1.3 (i.e., how do

these tools collect provenance?) by relating provenance applications to provenance types and
classifying approaches according to our taxonomy. Section 3.2 seeks to answer RQ1.4 (i.e., how do
these tools manage provenance?) by relating provenance applications to storage, distribution, and
versioning. Section 3.3 seeks to answer RQ1.5 (i.e., how do these tools analyze provenance?) by
relating provenance applications to visualization and query support. Finally, Section 3.4 discusses
threats to the validity of the presented results.

3The authors indicated the software is of historical interest only and did not validate the classi�cation.
4The authors did not reply.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:19

RQ1.1. For what purpose do these tools collect provenance?

Answer:We identi�ed �ve purposes for provenance: caching, comprehension, framework, man-
agement, and reproducibility. The most supported purposes are comprehension, reproducibility,
and management.
Implications: Few approaches de�ne frameworks for provenance and fewer approaches use
provenance for caching. Moreover, we could not �nd any approach that collects provenance from
scripts for security. All of these goals present opportunities for future research.

RQ1.2. Where and when were these tools published?

Answer:Most approaches were published in conferences, more speci�cally at IPAW and TaPP. The
�rst approach that collects provenance from scripts was published in 1988, but the topic started to
get more attention from 2008 on, due to the provenance challenges, and the number of approaches
increased.
Implications: These results indicate which venues are interested in the topic and that the topic is
attracting attention from the international community.

3.1 Provenance Collection

In this section, we categorize the approaches in diverse groups to answer RQ1.3 (i.e., how do
these tools collect provenance?). As we mentioned before, we identi�ed 27 approaches that collect
provenance from scripts. While the Earth Science System Server (ES3) [39, 41–44, 125] collects
provenance from binary executions by default, it does include a plugin to collect provenance from
IDL scripts optionally. Thus, it appears in our snowballing. Similarly, SPADE [46–49, 93, 124] has
both reporters to collect operating system provenance and reporters to collected provenance from
scripts compiled by an LLVM compiler. Hence, it also appears in this work.

Di�erent approaches support di�erent scripting languages. Table 2 relates supported languages
to approaches. Some approaches appear multiple times in this table (i.e., support multiple scripting
languages): the Core Provenance Library [82] (CPL) is a general-purpose provenance library with
implementations for Python, R, C, CPP, and Java; and Gavish and Donoho [45] provide Veri�able
Computational Result (VCR) implementations in R, Python, and Matlab. Besides these approaches,
three approaches (Sumatra [27], Variolite [68], and YesWork�ow [86, 87]) are language agnostic.
That is, they support any scripting language that uses text �les. As stated before, SPADE proposes a
semi-agnostic approach that collects provenance from any scripting language that can be compiled
by an LLVM compiler. Finally, in this table, we can see that the most common supported languages
are Python and R. These languages are supported by 16 and 6 approaches, respectively.

Table 2. Supported scripting languages

Language Count Approaches

Python 16
Astro-WISE, Bochner et al. [12], CPL, IncPy, Lancet, Magni, noWork�ow, Provenance

Curious, pypet, Sacred, StarFlow, Sumatra, VCR, versuchung, WISE, YW*NW

R 6 CPL, CXXR, Datatrack, RDataTracker, SisGExp, VCR

Agnostic 3 Sumatra, Variolite, YesWork�ow

S 1 Becker and Chambers [11]

IDL 1 ES3

Perl 1 ESSW

Blockly 1 Michaelides et al. [90]

LLVM 1 SPADE

Matlab 1 VCR

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 J. F. Pimentel et al.

Annotation Execution Deployment Definition Overall
Provenance Types

Pr
ov

en
an

ce
 A

pp
lic

at
io

ns

16 23

5 5

11 14

3 3

20

23

5

14

3

27

17

5

12

3

21 27

11

3

14

10 1111 8 10

7

1Caching

Comprehension

Framework

Management

Reproducibility

Overall

Fig. 11. Provenance types related to supported provenance applications. The numbers in the bubbles represent
the number of approaches that support the feature. A single approach can appear in multiple bubbles.

As described in Section 2.1, we classify provenance into four types: annotations, execution,
deployment, and de�nition. Figure 11 relates each provenance type to the supported provenance
applications. We can observe interesting aspects of this �gure. First, for comprehension, all ap-
proaches collect execution provenance. It indicates that these approaches focus on comprehending
the execution. Second, most approaches seem to rely on annotations for collection. Finally, few ap-
proaches collect deployment provenance. Hence, the other approaches do not seem to consider the
impact of the environment on their usage goals. In approaches that seek to support reproducibility,
it might cause issues.
In Section 2.1, we described diverse mechanisms for collecting each type of provenance. We

classify annotations according to their placement, extraction, inclusiveness, target, and necessity.
We classify execution provenance collection into four groups: passive monitoring, overriding,
post-mortem, and instrumentation. We classify deployment provenance according to the frequency
of collection: single snapshot or continuous. Finally, we classify de�nition provenance collection
according to how and when they collect it: collecting �les in a directory (how/reading), extracting
annotations or structure from scripts (how/parsing), collecting de�nition before or after trials
(when/static), collecting de�nition on demand (when/dynamic). Table 3 compares these provenance
collection mechanisms for the approaches.
Even though Sumatra [27] is presented as language-agnostic in Table 2, it supports extracting

Python modules and provides an API for extending to other languages. In addition to Python
modules, Sumatra also collects a snapshot of environment variables from any scripting language
as deployment provenance. Sumatra uses the post-mortem strategy for execution provenance
collection. It collects �les after the execution in a speci�c directory as outputs of a trial and
the content of �les and experiment before the execution as input. Additionally, Sumatra accepts
external inclusive annotations on provenance to describe what is happening in the environment or
experiment. Similar to Sumatra, SisGExp [26] and Variolite [68] support annotations on provenance
to describe speci�c trials. However, while Sumatra focuses on guaranteeing the reproducibility
of experiments, SisGExp and Variolite focus on managing multiple trials of experiments. Thus,
these approaches do not collect deployment provenance. Both approaches use annotations not only
on provenance but also to indicate what they should collect. SisGExp requires users to indicate
the scripts and which �les they want to collect. Thus, it applies the instrumentation strategy for
execution provenance collection and collects de�nition provenance by reading the declared �les.
On the other hand, Variolite is a text editor plugin that uses external annotations referring to
internal parts of scripts to collect variant versions as de�nition provenance. Variolite also employs
the post-mortem strategy to collect execution provenance.

Many other approaches support inclusive annotations in scripts to assist provenance collection.
Astro-WISE [99, 100], Bochner et al. [12], Datatrack [34], ESSW [40], Lancet [121], Magni [103],

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:21

Table 3. Provenance collection strategies. Labels in Annotations columns refer to categories described in Sec-
tion 2.1.1 Exte —External; Inte —Internal; Pars —Parseable; Exec —Executable; Incl —Inclusive; Excl —Exclusive;
Defi —Definition; Prov —Provenance; Man —Mandatory; Opt —Optional.

Approach Granularity Annotations Execution Depl. De�nition

P
la
ce
m
e
n
t

E
x
tr
a
ct
io
n

In
cl
u
si
v
e
n
e
ss

T
a
rg
e
t

N
e
ce
ss
it
y

P
a
ss
iv
e
M
o
n
it
o
ri
n
g

O
v
e
rr
id
in
g

P
o
st
-M

o
rt
e
m

In
st
ru

m
e
n
ta
ti
o
n

S
n
a
p
sh

o
t

C
o
n
ti
n
u
o
u
s

R
e
a
d
in
g

P
a
rs
in
g

S
ta
ti
c

D
y
n
a
m
ic

Astro-WISE

User de�ned, Attributes,

Files (I/O), Parameters,

Source

Inte Exec Incl De� Man ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓

Becker and

Chambers [11]

Commands, Variables,

Random Seed
✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Bochner et al.

[12]

User de�ned, Files,

Platform
Inte Exec Incl De� Man ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓

CPL N/A — — — — — — — — — — — — — — —

CXXR
Commands, Variables,

Random Seed, Files (I)
✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Datatrack

User de�ned,

Parameters, Platform,

Modules

Inte Exec Incl
De�

Prov

Man

Opt
✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

ES3 Files (I/O - metadata) ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ESSW
User de�ned, Processes,

Files (I/O)
Inte Exec Incl De� Man ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓

IncPy
Functions, Globals,

Stack, Output, Files (I/O)
Inte Exec

Incl

Excl
De� Opt ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓

Lancet
Arguments, Commands,

Platform, Env. Var.
Inte Exec Incl De� Man ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗

Magni
User de�ned, Stack

Trace, Platform, Source
Inte Exec Incl De� Man ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗

Michaelides et al.

[90]

Blocks, Calls, Random

Seed, User Input
✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

noWork�ow

Functions, Variables,

Env. Var., Platform,

Modules, Files (I/O)

✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Provenance

Curious

Language Constructs,

Files (I/O)
Exte Pars Incl De� Man ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗

pypet
Arguments, Output,

Sumatra
Inte Exec Incl

De�

Prov

Man

Opt
✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

RDataTracker

Commands, Variables,

Values, Env. Var.,

Platform, Modules, Files

(I/O)

✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓

Sacred

User de�ned, Output,

Modules, Host, Source,

Files (I/O)

Inte Exec Incl De� Opt ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓

SisGExp
User de�ned, Files (I/O),

Source
Exte Pars Incl Prov Man ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗

Continued on next page

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 J. F. Pimentel et al.

Approach Granularity Annotations Execution Depl. De�nition

P
la
ce
m
e
n
t

E
x
tr
a
ct
io
n

In
cl
u
si
v
e
n
e
ss

T
a
rg
e
t

N
e
ce
ss
it
y

P
a
ss
iv
e
M
o
n
it
o
ri
n
g

O
v
e
rr
id
in
g

P
o
st
-M

o
rt
e
m

In
st
ru

m
e
n
ta
ti
o
n

S
n
a
p
sh

o
t

C
o
n
ti
n
u
o
u
s

R
e
a
d
in
g

P
a
rs
in
g

S
ta
ti
c

D
y
n
a
m
ic

SPADE

Functions, Returns,

Arguments, Stack Trace,

Env. Var.

Exte Pars Excl De� Opt ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

StarFlow
Functions, Modules,

Files (I/O), Stack Trace
Inte

Pars

Exec
Incl De� Opt ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Sumatra Modules, Files (I/O) Exte Pars Incl Prov Opt ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

Variolite
Arguments, Output,

Source
Exte Pars Incl Prov Opt ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗

VCR
User de�ned, Variables,

Calls, Stack Trace
Inte Exec Incl De� Man ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

versuchung
User de�ned, Files (I/O),

Source
Inte Exec Incl De� Man ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓

WISE
Processes, Modules,

Files (I/O - metadata)
✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

YesWork�ow User de�ned
Inte

Exte
Pars Incl De� Man ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

YW*NW
Variables, Dependencies,

User de�ned
Inte Pars Incl De� Man ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

pypet [88, 89], Sacred [51], VCR [45], and versuchung [30] de�ne libraries for provenance collection
during execution. Thus, they use internal executable annotations to include provenance. Astro-WISE
and versuchung propose embedded domain-speci�c languages for de�ning which objects should be
traced in a descriptive way. Bochner et al. [12] and Magni propose generic functions for provenance
collection and storage. Hence, programmers can use them as frameworks to implement other
provenance tools. The same does not apply for other approaches since they restrict their collection
domain. Datatrack provides wrapper functions to collect dependencies among �le accesses during
the execution. ESSW provides Perl wrappers for the execution of external processes and functions
and for de�ning �le dependencies. Lancet uses annotations to describe experiments in a declarative
way in Python. Sacred and pypet use annotations to declare parameters and outputs that should
be collected. Sacred also uses the overriding strategy to collect the standard output. VCR uses
annotations to log, load, and compute veri�able computational results with provenance.

In addition to the mandatory annotations that target the de�nition to assist provenance collection,
Datatrack and pypet also support optional annotations that target the provenance, by passing extra
parameters to the mandatory annotations functions. These extra parameters allow users to describe
the collected provenance.
While all these approaches use annotations to collect execution provenance, the same cannot

be said for other types of provenance. VCR supports only execution provenance. In addition to
execution provenance, Bochner et al. [12], Datatrack and Magni provide functions for collecting
deployment provenance continuously during the execution. On the other hand, Lancet and Sacred
automatically collect a snapshot of the deployment provenance. Astro-WISE, Bochner et al. [12],
ESSW, Sacred, and versuchung collect the de�nition of input �les and output �les as de�nition
provenance dynamically, in addition to execution provenance. Astro-WISE, Magni, Sacred, and
versuchung also collect the script source code as de�nition provenance. Similarly, Lancet collects

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:23

the experiment declaration as de�nition provenance. The pypet approach can be integrated with
Sumatra for de�nition and deployment provenance collection.

StarFlow [7, 8] also proposes a library that provides inclusive internal annotations for provenance
collection. However, di�erent from the other approaches, annotations are not the only mechanism
for provenance collection in StarFlow. Instead, it uses speci�c naming conventions for arguments
in function de�nitions and decorators in Python as annotations for provenance collection. These
annotations are both parseable and executable as they are valid Python constructs. With these
annotations, StarFlow statically decides in which order it should call the annotated functions based
on declared �le dependencies. Thus, StarFlow parses the scripts to extract annotations and collect
de�nition provenance. During the execution, StarFlow also applies the passive monitoring strategy
to extract function calls and the overriding strategy to collect �le accesses. However, its execution
provenance is independent of the annotations. StarFlow supports using execution provenance for
verifying if annotations are correct. Hence, it uses optional annotations to extract the experiment
pipeline and manage its execution. StarFlow supports distributing the pipeline to a cluster and
re-executing only necessary functions if an input �le changes. For keeping all dependencies during
distribution, StarFlow also collects a snapshot of the modules as deployment provenance.
Similar to StarFlow, YesWork�ow [86, 87] also uses parseable internal annotations to extract

pipelines from scripts. However, instead of using existing script constructs as annotations, YesWork-
�ow uses a domain speci�c language on commentaries. Thus, it is able to support almost all scripting
languages but loses the ability to manage the execution and verifying if the annotations really
represent the script de�nition. In addition to commentaries in a script, YesWork�ow annotations
can also appear in external �les referring to the script. YesWork�ow also uses annotations to
determine URI templates to input and output �les. After the execution, YesWork�ow applies the
post-mortem strategy and collects all metadata from �les that match these URI templates.

Provenance Curious [60–62] uses annotations to include data that is not collected during execu-
tion. It collects de�nition provenance by parsing Python scripts and collects execution provenance
using the post-mortem strategy. Provenance Curious uses statistical models to infer all the prove-
nance. It allows users to change the parsed de�nition provenance through external annotations to
improve the inference.

The Work�ow Instrumentation for Structure Extraction (WISE) [1–4] also uses the post-mortem
strategy to collect accessed �les. However, instead of considering only the de�nition provenance
from the post-mortem strategy, it combines the post-mortem strategy with the overriding strategy.
WISE overrides the script and its modules to collect provenance. It applies the post-mortem strategy
for each invoked program to identify output �les. WISE backups the original scripts and modules
as de�nition provenance.
IncPy [53–55] and SPADE [46–49, 93, 124] use annotations to �lter the provenance collection.

Both approaches apply the overriding strategy to collect function calls and annotations to �lter
them. IncPy modi�es the Python interpreter to collect provenance for caching. By default, it caches
only pure functions (i.e., functions whose return values depend only on parameters and that do
not cause side e�ects), �les produced by these functions, and global variables. However, it allows
users to decorate functions with internal annotations to force caching impure functions or to
exclude pure functions from caching. As de�nition provenance, IncPy reads scripts de�nition and
collects accessed �le contents during execution for caching, and parses scripts to extract function
dependencies for caching invalidation. On the other hand, SPADE instruments scripts compiled
with an LLVM compiler to provide comprehension. Thus, they only use external SPADE �lters to
exclude function calls. In addition to the execution provenance, SPADE supports the collection of a
snapshot of environment variables as deployment provenance.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:24 J. F. Pimentel et al.

Becker and Chambers [11], CXXR [112–114, 116, 117], ES3 [43], Michaelides et al. [90], noWork-
�ow [98, 106–109], and RDataTracker [74–76] collect provenance without annotations, through
the overriding strategy. Similar to WISE, ES3 also modi�es IDL scripts and RDataTracker modi�es
R scripts to include instrumented functions for logging and overrides built-in functions. Becker
and Chambers [11], CXXR, and Michaelides et al. [90] modify the interpreter for provenance
collection. Since Michaelides et al. [90] have the goal of supporting reproducibility, they also collect
de�nition provenance during execution according to what was executed. Thus, they unfold loops
and replace user inputs with values. Similarly, Becker and Chambers [11] also collect the sequence
of statements as de�nition provenance for supporting reproducibility. In addition to the overriding
strategy, RDataTracker uses the passive monitoring strategy to collect inputs and outputs and
information about top-level R statements. Similarly, noWork�ow combines the passive monitoring
strategy with the overriding strategy for execution provenance collection. However, instead of
changing the script or the interpreter, it de�nes custom pro�lers and tracers before the execution
to track executed functions and lines and overrides only built-in functions to collect accessed �les.
Both noWork�ow and RDataTracker also collect the used scripts as de�nition provenance, and the
imported modules and environment variables as deployment provenance.

YW*NW [29, 105] combines YesWork�ow and noWork�ow to use the annotations of the former
as �lters for variables and functions collected by the latter. This way, it uses parseable internal
annotations together with automatic provenance collection mechanisms to collect all types of
execution, deployment, and de�nition provenance.
Finally, CPL has no classi�cation in Table 3. When we contacted the authors, they indicated

that the classi�cation is orthogonal to CPL. CPL was designed as a library to be used with other
provenance tools instead of as a tool to collect provenance. Thus, the provenance collection strategies
on CPL varies according to the tools that use it.

RQ1.3. How do these tools collect provenance?

Answer: The most commonly-used strategy for collecting execution provenance is to instrument
the code with inclusive annotations. These annotations often appear inside the script de�nitions and
are pervasive for all identi�ed provenance usages. Some approaches also use annotations to collect
deployment and de�nition provenance. However, themost used strategy for deployment provenance
collection is taking a snapshot of automatically discovered dependencies and environment variables.
Additionally, the most used strategy for de�nition provenance collection is statically reading �les
before the execution.
Implications: Few approaches employ a fully automated provenance collection which supports
passive monitoring, overriding, and post-mortem strategies. This results in more work for users,
which may hamper their adoption of provenance tools. Additionally, very few approaches support
the dynamic collection of deployment provenance. Hence, most approaches are not suited for
scripts that modify the environment during execution.

3.2 Provenance Management

In this section, we categorize the approaches related to how they store, distribute, and version
provenance to answer RQ1.4 (i.e., how do these tools manage provenance?). We already presented
approaches that support reproducibility in Table 1. As we describe in Section 2.2, approaches store
provenance in databases systems, memory, or �les, and distribute the provenance through local
�les and remote repositories or web servers. Additionally, approaches may support versioning
by identifying trials, storing sequences of trials, or storing the actual evolution intention. Table 4
compares the provenance management for the approaches.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:25

Table 4. Provenance management classification.

Approach Artifacts Storage Dist. Versioning

D
a
ta
b
a
se

M
e
m
o
ry

F
il
e

L
o
ca
l

R
e
m
o
te

Astro-WISE Oracle ✓ ✗ ✗ ✗ ✗ Sequence

Becker and Chambers [11] Proprietary, Source ✗ ✗ ✓ ✓ ✗ ✗

Bochner et al. [12] PReServ ✗ ✗ ✗ ✗ ✓ ✗

CPL MySQL, PostgreSQL, 4store ✓ ✗ ✗ ✓ ✗ Trial ID

CXXR Memory ✗ ✓ ✗ ✗ ✗ ✗

Datatrack VCS, Proprietary (CSV) ✗ ✗ ✓ ✓ ✓ Trial ID

ES3 XML Server, GraphML, Graphviz ✓ ✗ ✗ ✓ ✗ ✗

ESSW MySQL, Content DB, Graphviz ✓ ✗ ✓ ✓ ✗ Trial ID

IncPy Content DB ✗ ✗ ✓ ✓ ✗ ✗

Lancet Log ✗ ✗ ✓ ✓ ✗ Intention

Magni Proprietary (JSON, HDF5) ✗ ✗ ✓ ✓ ✗ Intention

Michaelides et al. [90] Proprietary (INPWR), PROV, Source ✗ ✗ ✓ ✓ ✗ ✗

noWork�ow Content DB, SQLite, Prolog ✓ ✗ ✓ ✓ ✗ Intention

Provenance Curious SQLite, GraphML ✓ ✗ ✗ ✓ ✗ ✗

pypet Proprietary (HDF5) ✗ ✗ ✓ ✓ ✗ Intention

RDataTracker PROV-JSON ✗ ✗ ✓ ✓ ✗ Trial ID

Sacred MongoDB, Relational, JSON ✓ ✗ ✓ ✓ ✗ Trial ID

SisGExp PostgreSQL, Repository ✓ ✗ ✓ ✗ ✓ ✗

SPADE
PostgreSQL, MySQL, H2, Neo4j, Datalog,

GraphViz, PROV
✓ ✗ ✓ ✓ ✓ ✗

StarFlow OPM, Proprietary (CSV) ✗ ✗ ✓ ✓ ✗ ✗

Sumatra SQLite, VCS ✓ ✗ ✓ ✗ ✓ Intention

Variolite Proprietary (JSON) ✗ ✗ ✓ ✓ ✗ Intention

VCR Log, Repository ✗ ✗ ✓ ✗ ✓ ✗

versuchung Content DB, SQLite, Proprietary (Dict) ✓ ✗ ✓ ✓ ✗ Intention

WISE Graphviz, GraphML ✗ ✗ ✓ ✓ ✗ ✗

YesWork�ow PROV, Datalog, Graphviz ✗ ✗ ✓ ✓ ✗ ✗

YW*NW noWork�ow + YesWork�ow ✓ ✗ ✓ ✓ ✗ ✗

Figure 12 compares supported provenance applications to storage systems. The most popular
storage systems are relational databases, proprietary �les, and content databases. Note that we
classify version control systems as content databases. Some approaches use more than one storage
system. For instance, Sumatra uses both a version control system (content database) and a relational
database. Thus, it appears as File and Database. Eleven approaches use relational databases: Astro-
WISE uses Oracle; CPL and SPADE use MySQL or PostgreSQL; Provenance Curious, noWork�ow,
Sumatra, versuchung, and YW*NW use SQLite; ESSW uses MySQL; SisGExp uses PostgreSQL.
Sacred supports a variety of relational databases through an ORM system. Among approaches that
use database systems, CPL and SPADE can also store provenance in graph databases (4store and
Neo4j, respectively) instead of in relational databases. Finally, as NoSQL databases, ES3 uses XML
Database Servers and Sacred supports MongoDB.

In addition to the relational database, Sumatra stores provenance in version control systems and
ESSW, noWork�ow, and YW*NW store provenance in a content database. IncPy and versuchung
also store provenance in content databases. While IncPy uses content databases based on naming
conventions for caching (i.e., without an additional database for metadata), versuchung stores
Python dictionaries with provenance in proprietary �les.
Similar to Sumatra, Datatrack also uses version control systems. However, instead of using it

with a relational database, it uses a proprietary CSV �le. VCR also stores provenance as a log in a

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:26 J. F. Pimentel et al.

GraphDB Relational NoSQL " Content Log Interoperable Logic Graph Proprietary Overall
Database Memory File

Pr
ov

en
an

ce
 A

pp
lic

at
io

ns

10 22

3 4

7 14

1 3

11 27

8

7

10

1

2

1

1

6 11

7

8

5

2

2

6

1

2

2

1

2

2

5

4

4

1

1

1 2

3

2

3

4

2

4

1

1 1

1

1 1

Caching

Comprehension

Framework

Management

Reproducibility

Overall

Storage Systems

Fig. 12. Storage systems related to supported provenance applications. The numbers in the bubbles represent
the number of approaches that support the feature. A single approach can appear in multiple bubbles.

content database. It proposes its own provenance repository for reproducible computational results.
Lancet also stores provenance in a log �le.

StarFlow, SPADE, RDataTracker, and YesWork�ow produce interoperable provenance formats as
the result of provenance collection. The former creates OPM �les and the others create PROV �les.
As an alternative to OPM, StarFlow also supports producing XML and CSV �les with a proprietary
data model. Similarly, SPADE supports storing provenance in proprietary text �les, GraphViz �les
with combined graphs, or logic �les for Datalog, as an alternative to databases and PROV �les.
YesWork�ow also provides an alternative to PROV. It supports producing graph de�nition �les for
GraphViz in three visualization formats (process-centric, data-centric, and combined) and logic �les
for Datalog. In addition to SPADE and YesWork�ow, the only approaches that store provenance in
graph de�nition �les are WISE and YW*NW.WISE produces GraphViz and GraphML �les. YW*NW
produces GraphViz �les with combined graphs.
In addition to Datatrack, SPADE, StarFlow, and versuchung, six other approaches produce

proprietary �les. Michaelides et al. [90] store provenance in an intermediate notation for provenance
and work�ow reproducibility (INPWR). INPWR supports an easy mapping to PROV or to Blockly
scripts for reproducibility. Becker and Chambers [11] store provenance in an intermediate format
that stores a list of statements and objects a�ected by each statement. Similar to INPWR, Becker
and Chambers [11] support converting provenance back to S scripts for reproducibility. All the
other approaches that store provenance in proprietary �les use common �le formats: Magni uses
JSON and HDF5 �les; pypet uses HDF5; Sacred and Variolite use JSON.

Besides �les and database systems, note in Figure 12 that one approach, CXXR, does not store
provenance in the persistent memory. Its provenance exists only during the execution. Finally,
Bochner et al. [12] do not store the provenance nor keeps it only in the memory. Instead, it
distributes it to a remote web server that manages the storage. SPADE also supports transferring
the provenance to a remote server instead of storing it.
All approaches that only store provenance in �les support distributing provenance locally

by distributing these �les [1–4, 7, 8, 11, 29, 30, 34, 46–49, 54, 68, 75, 76, 86–90, 93, 98, 103, 105–
109, 121, 124]. Additionally, repository approaches distribute provenance through the repositories
themselves [27, 34, 45]. However, these are not the only ways to distribute provenance. Diverse
approaches also convert the stored provenance into interoperable formats and other formats suitable
for analysis, as presented in Figure 13. This �gure relates storage systems with distribution systems.
The approaches that store provenance in a database and produce �les for distribution are CPL,

ESSW, ES3, noWork�ow, Provenance Curious, Sacred, SPADE, versuchung, and YW*NW. CPL,
Sacred, and versuchung produce �les with a proprietary data model. ESSW produces GraphViz
�les for visualization. ES3 produces GraphViz and GraphML �les. Provenance Curious produces
GraphML �les. noWork�ow produces GraphViz �les for visualization and Prolog �les for logic
inference. Similarly, SPADE and YW*NW produce GraphViz �les for visualization and Datalog

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:27

GraphDB Relational NoSQL " Content Log Interoperable Logic Graph Proprietary Overall
Database Memory File

D
is

tri
bu

tio
n

27

10 21

10

8

10

2

2

3 5

6

8

2

2

2

1

2

4

4

31 1 1

3

3

1

4

4

1

Local

Remote

Overall

Storage

Fig. 13. Storage related to distribution. The numbers in the bubbles represent the number of approaches that
support the feature. A single approach can appear in multiple bubbles.

Internal External Log Process Data Combined Clustering Filtering Overall
 Place Type Summarization

Pr
ov

en
an

ce
 A

pp
lic

at
io

ns

16 19

1 1

9 11

1 2

16 19

3

1

1

1

3

4

2

4

8 91 2

6

6

8

8

3

3

6

6

6

5

5

6

3

1

2

4

3

2

4

2

1Caching

Comprehension

Framework

Management

Reproducibility

Overall

Visualization

Fig. 14. Visualization related to supported provenance applications. The numbers in the bubbles represent
the number of approaches that support the feature. A single approach can appear in multiple bubbles.

�les for logic inference. In addition to these �les, noWork�ow’s provenance can be distributed
as a directory package [106]. Two approaches that store provenance in a database distribute it
through repositories. One of them is the aforementioned Sumatra, that also stores provenance in
repositories. The other is SisGExp, which provides a web server as a repository for experiments.
Fifteen out of sixteen approaches that store provenance as �les support distributing the same

�les [1–4, 7, 8, 11, 29, 30, 34, 46–49, 54, 68, 75, 76, 86–90, 93, 98, 103, 105–109, 124]. As stated before,
ESSW does not distribute the same �les, but it distributes graph �les. In addition to distributing the
proprietary INPWR format, Michaelides et al. [90] support transforming this �le into PROV or back
into executable Blockly scripts. Becker and Chambers [11] support transforming their proprietary
�les back into S scripts.
Astro-WISE, CPL, Datatrack, ESSW, Lancet, Magni, noWork�ow, pypet, RDataTracker, Sacred,

Sumatra, Variolite, and versuchung support provenance versioning. As we stated before, Sumatra
uses a version control system for provenance storage. Lancet provides optional functions to log the
current de�nition version in version control systems. Hence, if a user commits each experiment, it
is possible to keep track of provenance evolution. Similarly, Magni, pypet, and versuchung can be
integrated with version control systems. Thus, in these systems, versions correspond to provenance
versions. Since they use version control systems, they can record the evolution intention and they
are able to compare �les from di�erent experiments.

Similar to the approaches that use version control systems, noWork�ow and Variolite also track
the evolution intention by implementing their own versioning system for provenance. noWork-
�ow [106] assigns a trial version number for each trial, stores the evolution of trial versions, and
supports restoring previous versions with intermediate provenance data. Variolite, on the other
hand, supports creating variations of script de�nitions with branches in each variation.

Astro-WISEmaintains a derivation reference for versioning. During the trial execution, it enforces
the immutability of tracked objects and the uniqueness of object versions across all trials. It also
allows an object of a newer trial to reference objects from previous trials. While this versioning
strategy does not show the evolution intention, it allows users to have full provenance traceability.
Finally, CPL, DataTrack, ESSW, RDataTracker, and Sacred support a weak form of provenance

evolution: these approaches just associate a trial identi�er for each execution, but do not track

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:28 J. F. Pimentel et al.

what motivated each trial evolution nor the actual evolution sequence, in case a user rollbacks to a
previous version. Trial sequences can be inferred in these approaches either by their moment of
execution or by their identi�cation sequence.

RQ1.4. How do these tools manage provenance?

Answer: Most approaches store provenance in relational databases, proprietary �les, and content
databases. The approaches that store provenance in �les support sharing the provenance by sharing
these �les. Some approaches that store provenance in databases support converting the provenance
to �les for sharing. Finally, we identi�ed approaches with versioning support. Some use full-�edged
version control systems, others implement their own versioning, and some just provide basic
versioning that identi�es the id or timestamp of versions.
Implications:Most approaches that use �les for sharing provenance do not support loading exter-
nal provenance into the system. Moreover, using proprietary �le formats makes the collaboration
and concurrent work on projects harder. Using version control systems reduces these problems,
but poses issues on how to structure the provenance.

3.3 Provenance Analysis

In this section, we categorize the approaches to answer RQ1.5 (i.e., how do these tools analyze
provenance?). We identify how each approach queries provenance (e.g., generic language, or
speci�c querying mechanism); how each approach visualizes provenance, according to the place of
visualization, the type of visualization, and the support for summarization; and how each approach
supports comparison (di�). Table 5 compares the approaches according to their provenance analysis.
Figure 14 relates provenance visualization with supported provenance applications. Note that

only 19 approaches out of 27 support provenance visualization. As expected, users can employ all
approaches that support provenance visualization for comprehension. Although only RDataTracker,
SPADE, StarFlow [8] and YesWork�ow [87] store provenance in interoperable formats, Michaelides
et al. [90] produce it for analysis and distribution. As we stated in Section 2.3, such �les can be
used to visualize and query provenance by external tools. Note that SPADE and YesWork�ow
support both external and internal visualization mechanisms. These approaches provide their own
visualization, but also export provenance to interoperable �les.

The most popular graph format for visualization are combined graphs. These graphs present both
process and data and appear in eight approaches: ES3, ESSW, noWork�ow, Provenance Curious,
RDataTracker, SPADE, YesWork�ow, and YW*NW. Among these approaches, �ve support summa-
rizing the graph. noWork�ow and YW*NW use logic queries to select variables or function calls in
the graph and �lter everything that does not appear in the provenance of the selected elements.
Provenance Curious [62] presents combined graphs that apply graph compression re-write rules
for summarizations and support further manual summarizations. RDataTracker support clustering
and �ltering the graphs in the DDG explorer, an external tool designed to work with RDataTracker
provenance. SPADE supports summarizing the graphs through provenance transformers.

In addition to the combined graphs, noWork�ow produces a process-centric graph that summa-
rizes activations and support manual collapsing of nodes [98]. It also produces a trial evolution
history graph and supports comparing the process-centric graphs of two trials [106]. Similarly,
RDataTracker, SPADE, and Sumatra support comparing the provenance of trials. RDataTracker uses
the DDG Explorer to compare lists of procedure nodes. SPADE compares responses to distributed
provenance queries against cached prior responses. Sumatra compares provenance through a
web interface and command lines. It also allows comparing �le de�nitions through the version
control system. All approaches that support version control systems can use them to compare

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:29

Table 5. Provenance analysis classification, based on �ery, Visualization, and Di�.

Approach Query Visualization Di�

Place Type Sum.

Generic Speci�c

In
te
rn

a
l

E
x
te
rn

a
l

L
o
g

P
ro
ce
ss

D
a
ta

C
o
m
b
in
e
d

C
lu
st
e
ri
n
g

F
il
te
ri
n
g

D
a
ta

P
ro
v
e
n
a
n
ce

Astro-WISE SQL Functions, Web ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓

Becker and Chambers [11] ✗ Functions ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Bochner et al. [12] XQuery, XPath Web ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CPL SPARQL, SQL Functions ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CXXR ✗ Functions ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Datatrack ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗

ES3 XQuery ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

ESSW SQL Web ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

IncPy ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Lancet ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Magni ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Michaelides et al. [90] ✗ PROV ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

noWork�ow SQL, Prolog Functions, Web ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓

Provenance Curious SQL Functions ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

pypet ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

RDataTracker ✗
DDG, PROV,

Functions
✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓

Sacred SQL Web ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SisGExp SQL Web ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SPADE
SQL, Cypher,

Datalog
PROV, Functions ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓

StarFlow ✗ Functions, OPM ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Sumatra SQL Command, Web ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Variolite ✗ Command ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

VCR ✗ Web ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

versuchung SQL Functions ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

WISE ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

YesWork�ow Datalog PROV ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

YW*NW Datalog ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗

�le de�nitions [30, 34, 88, 103, 121]. The same occurs with Variolite [68], that implements its own
version control system. In addition to noWork�ow, RDataTracker, SPADE, and Sumatra, only Astro-
WISE, Star�ow, and IncPy compare provenance. Astro-Wise compares provenance to check which
dependencies have changed. Star�ow and Incpy, on the other hand, compares both provenance and
data for cache invalidation. Both Sumatra and noWork�ow can also visualize trial provenance as a
log. Similarly, Sacred, SisGExp, Variolite, and VCR also present the list of trials as a log.

YesWork�ow produces three types of graphs: combined graphs, process-centric, and data-centric.
YW*NW [29, 105] uses YesWork�ow to �lter noWork�ow variables. Thus, it produces graphs
composed by YesWork�ow blocks, but with noWork�ow values. In addition to YesWork�ow and
noWork�ow, the only approaches that support process-centric graphs are WISE, and the one pro-
posed by Becker and Chambers [11]. WISE produces process-centric graphs with the sequence of
external programs invoked by the scripts. It also supports producing summarized graphs that com-
bine processes. Becker and Chambers [11] use commands to plot relationships between statements.
In addition to YesWork�ow, Datatrack and Astro-WISE produce data-centric views. While

Datatrack produces a graph that combines all data accesses from the history into nodes, Astro-
WISE produces a derivation tree and use parent relationships to describe provenance.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:30 J. F. Pimentel et al.

Language Command Functions Proprietary Web Interoperable Overall
Generic Specific

Pr
ov

en
an

ce
 A

pp
lic

at
io

ns

13 20

4 4

7 12

1 2

14 21

8

3

5

2

9

8

2

5

1

8

5 86

3

5

5

2

1

1

1

1

2

2

2

2

Caching

Comprehension

Framework

Management

Reproducibility

Overall

Query

Fig. 15. �erying modes related to supported provenance applications. The numbers in the bubbles represent
the number of approaches that support the feature. A single approach can appear in multiple bubbles.

Figure 15 relates provenance querying with supported provenance applications. Note that 21
approaches out of 27 support provenance querying. All the aforementioned approaches that store
or distribute provenance as interoperable formats support loading these �les in standalone tools
for speci�c provenance querying [7, 8, 46–49, 75, 76, 86, 87, 90, 93, 124].

The most popular querying mechanism is through query languages. In this category, we include
general-purpose query languages and logic languages. The usage of query languages correlates to
the high number of database systems for storage, as presented in Figure 12. Astro-WISE, ESSW,
Provenance Curious, Sacred, SisGExp, Sumatra, noWork�ow, and versuchung support SQL queries
because they use relational databases. CPL supports SQL queries as well when it is using a relational
database or SPARQL when it is using a graph database. Similarly, SPADE supports SQL when
it is using a relational database, Cypher when it is using a graph database, or Datalog when it
stores the provenance in Datalog �les. ES3 [43] supports XQuery and XPath since it uses an XML
server. Bochner et al. [12] also support XQuery and XPath by sending queries to the remote server.
In addition to these approaches, the approaches that support query languages are YesWork�ow
and YW*NW. These approaches support Datalog queries. In addition to SQL queries, noWork�ow
supports running Prolog queries.
The only approaches that use commands for querying are Sumatra and Variolite. Both of them

use commands for querying annotations. Instead of commands, some approaches o�er pre-de�ned
functions for querying. Astro-WISE o�ers commands for obtaining �les and provenance from
previous executions. Becker and Chambers [11] use functions to query and visualize provenance
stored in their proprietary �les. Additionally, they use functions to recreate S scripts based on a set
of executed statements. CPL provides functions to access the provenance and manage it in other
provenance tools. CXXR uses functions to obtain lineage from memory. Note that CXXR does not
store provenance at all. Thus, querying its provenance corresponds to obtaining command and
variable lineage that is in the memory. noWork�ow supports using object models and methods
to query the database in Jupyter Notebooks [109]. Provenance Curious uses functions to specify
how should it try to infer provenance from output values. RDataTracker provides debugging
functions that consume the provenance and supports querying functions in the DDG explorer.
SPADE supports transformation functions for summarizations. StarFlow uses functions to determine
which functions it should re-execute. StarFlow also uses functions for navigating in the lineage
and discovering whether it should re-execute cached functions or not. The versuchung approach
provides functions in the framework itself to analyze provenance as a new trial.
Finally, many approaches use web interfaces to facilitate provenance navigation, querying,

and management [12, 26, 27, 40, 45, 51, 99, 100, 109]. While many speci�c provenance querying
mechanisms have been proposed through functions, command, web interfaces, proprietary, and
interoperable �les, no speci�c query language has been proposed for scripts.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:31

RQ1.5. How do these tools analyze provenance?

Answer: Most approaches support queries and visualizations for analyzing provenance. The most
common querying modes are generic programming languages, speci�c functions, and web pages.
No approach proposes a new querying language for provenance from scripts. The most common
visualizations are implemented by the approaches themselves and display the provenance combining
data and processes. Very few approaches support summarizing and comparing provenance.
Implications: Since most approaches de�ne their own analysis methods, using a new approach
involves learning a new tool. On the other hand, implementing a speci�c analysis tool for an
approach allows performing more speci�c analyses.

3.4 Threats to Validity

Our systematic mapping has some threats to validity. Although we applied backward and forward
snowballing exhaustively, the snowballing process does not guarantee that we discovered all
related work. Additionally, our start set had papers published in only 2 distinct journals and 3
distinct conferences. This could lead to a disconnected component of a citation graph, which could
concentrate only on a small niche. Note, however, that Jalali and Wohlin [65] suggest that there are
no remarkable di�erences between database searches and backward snowballing, in the amount of
obtained papers. Moreover, the number of papers in distinct conferences and journals we found
indicate that our results did not concentrate in a small niche.

Since we considered only peer-reviewed work (e.g., paper, thesis), we left out unpublished related
work. For instance, we did not include recipy (https://github.com/recipy/recipy), nor recordr (https://
github.com/NCEAS/recordr), nor rdtLite (https://github.com/End-to-end-provenance/rdtLite) in our
mapping, since they have no published papers. Recipy collects �le provenance from Python scripts
through a single import annotation that overrides built-in methods. Recordr collects �le provenance
from R scripts through a library annotation that overrides built-in functions. Additionally, recordr
has functions to activate and deactivate the provenance collection for interactive sessions. Finally,
rdtLite is a lightweight version of RDataTracker that uses the instrumentation strategy instead of
the overriding strategy for execution provenance collection.
We considered only papers that we had access to their content and that matched our inclusion

criteria. Out of 1,345 visited references, we could not access 9 papers, 20 papers were in di�erent
languages, 70 references were technical reports, 65 references were books, and 138 references were
websites or email communications. Three papers that we could not access predates the �rst related
approach [11], and they do not seem to be related to provenance according to their citation contexts
and abstracts. We requested the other six to their authors, but we did not get a reply.

Another threat lies in the di�culty to identify features and classify papers. We excluded papers
by reading just their abstracts and titles. Some papers could hide the support of provenance from
scripts in the middle of the text. We believe we minimized the selection threat by keeping track and
reading the place in which each citation appeared. However, we had some di�culties to identify
whether some approaches were scripting provenance approaches, binary provenance approaches,
or just had the bene�ts of provenance collection without the intention of collecting provenance.

To identify the features of the approaches, we have both used information in the published papers
and asked authors to validate our classi�cations based on a summarized version of the taxonomy.
This leads to two extra threats. First, approaches for which we did not receive a reply may have
other implemented features that were not described in the papers or may have evolved since the
publication of the paper we surveyed here. Second, some authors that replied to our request had
di�culties to understand the taxonomy based on the summarized version of the taxonomy. We

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://github.com/recipy/recipy
https://github.com/NCEAS/recordr
https://github.com/NCEAS/recordr
https://github.com/End-to-end-provenance/rdtLite

1:32 J. F. Pimentel et al.

attempted to reduce this threat by discussing the answers with the authors and sending them the
Section 2 of this work.

4 CONCLUSIONS

In this work, we propose a taxonomy to characterize approaches that collect provenance from
scripts and we presented a systematic mapping with approaches that consider the structure of
scripts to collect provenance. In this mapping, we identi�ed �ve provenance applications, which
these approaches support: caching, comprehension, framework, management, and reproducibility.
Using these categories, we classi�ed each approach according to their collection, management, and
analysis support, according to the taxonomy we propose.
Regarding the taxonomy branches, we identi�ed approaches that employ all mechanisms of

provenance collection. However, few approaches collect �ne-grained provenance in a transparent
way (i.e., without demanding changes on the script). The only transparent approaches that collect
�ne-grained provenance are the one proposed by Becker and Chambers [11], CXXR [112, 117],
noWork�ow [98, 106, 107, 109], RDataTracker [76], and the one proposed by Michaelides et al.
[90]. Becker and Chambers [11] collect commands and variables in S. CXXR and RDataTracker
collect commands and variables in R. noWork�ow collects variables and functions calls in Python.
Michaelides et al. [90] collect block variables and block calls in Blockly. All these approaches have
limited support for collecting the provenance of complex data structures. Hence, research is needed
to develop e�cient �ne-grained provenance collection that supports complex data structures.
Few approaches use repositories to share execution and deployment provenance, while a con-

siderable number of approaches use version control systems that allow sharing and comparing
de�nition provenance. Moreover, many approaches support sharing provenance only by sharing
the generated provenance �les, without providing the means to compare or reuse such �les. Thus,
future research opportunities include proposing provenance distribution mechanisms for scripts
that bundle everything that is necessary for reproducibility in packages [21] and that allows users
to distribute provenance in repositories and compare not only de�nition provenance, but also
execution and deployment provenance.

While the approaches that use version control systems can track the intention of the experiment
evolution, these systems are not adapted to track the intention according to the life cycle of
experiments [85]. Hence, future research opportunities include proposing version control systems
that di�erentiate the composition phase (i.e., the phase where scientists formulate hypothesis
and compose execution plans) from the analysis phase (i.e., the phase where scientists query
and visualize results, seeking to elaborate conclusions to con�rm or refute the hypotheses of the
experiment) of experiments, and that support the exploratory nature of experiments. The closest
approaches that try to overcome these issues are noWork�ow and Sumatra. noWork�ow [106]
proposes a version model for provenance collected from scripts. Sumatra [27] provides a layer on
top of version control systems that adapts such tools for scientists.
Regarding provenance analysis, we found 14 approaches that support generic query languages

and 19 approaches that support speci�c query mechanisms. As we mentioned before, none of
these speci�c mechanisms is a query language de�ned for script provenance. Note, however,
that 10 approaches provide custom functions for querying the provenance. While such functions
are not query languages, they can also be considered speci�c query systems, and they could be
embedded in a domain speci�c language. Moreover, we foresee the opportunity of developing
provenance queries by example, using script slices. As for visualizations, we could only identify six
approaches that support provenance clustering [2, 34, 61, 75, 98, 124] and only four that support
graph �ltering [75, 98, 105, 124]. It indicates an opportunity for future research to propose di�erent
summarization techniques, such as sampling. Moreover, the current provenance graphs are limited

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:33

to directed graphs representing the provenance as-is. However, in the context of scripts, we foresee
using provenance to represent di�erent types of graphs, such as heat maps, indicating which parts
of the scripts contribute more to a result, Sankey Diagrams, presenting data�ows with di�erent
�ow sizes, and others.

REFERENCES

[1] Ruben Acuña. 2015. Understanding Legacy Work�ows through Runtime Trace Analysis. Master’s thesis. Arizona State

University.

[2] Ruben Acuña, Jacques Chomilier, and Zoé Lacroix. 2015. Managing and Documenting Legacy Scienti�c Work�ows.

Journal of Integrative Bioinformatics 12, 3 (2015), 277–277.

[3] Ruben Acuña and Zoé Lacroix. 2016. Extracting Semantics from Legacy Scienti�c Work�ows. In ICSC. IEEE, Laguna

Hills, California, USA, 9–16.

[4] Ruben Acuña, Zoé Lacroix, and Rida A Bazzi. 2015. Instrumentation and Trace Analysis for Ad-Hoc PythonWork�ows

in Cloud Environments. In CLOUD. IEEE, New York, USA, 114–121.

[5] Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton. 2008. RDFa in XHTML: Syntax and processing.

W3C Proposed Recommendation 7 (2008), 1–89.

[6] Manish Kumar Anand, Shawn Bowers, and Bertram Ludäscher. 2010. Provenance browser: Displaying and querying

scienti�c work�ow provenance graphs. In ICDE. IEEE, Long Beach, California, USA, 1201–1204.

[7] Elaine Angelino, Uri Braun, David A Holland, and Daniel W Margo. 2011. Provenance Integration Requires Reconcili-

ation. In TaPP. USENIX, Heraklion, Crete, Greece, 1–6.

[8] Elaine Angelino, Daniel Yamins, and Margo Seltzer. 2010. StarFlow: A script-centric data analysis environment. In

IPAW. Springer, Troy, NY, USA, 236–250.

[9] Keith A Baggerly and Kevin R Coombes. 2009. Deriving chemosensitivity from cell lines: Forensic bioinformatics and

reproducible research in high-throughput biology. The Annals of Applied Statistics 3, 4 (2009), 1309–1334.

[10] Zhuowei Bao, Sarah Cohen-Boulakia, Susan B Davidson, and Pierrick Girard. 2009. PDi�View: viewing the di�erence

in provenance of work�ow results. In VLDB. VLDB Endowment, Lyon, France, 1638–1641.

[11] Richard A Becker and John M Chambers. 1988. Auditing of data analyses. SIAM J. Sci. Statist. Comput. 9, 4 (1988),

747–760.

[12] Carsten Bochner, Roland Gude, and Andreas Schreiber. 2008. A python library for provenance recording and querying.

In IPAW. Springer, Salt-Lake City, USA, 229–240.

[13] Uri Braun, Simson Gar�nkel, David A Holland, Kiran-Kumar Muniswamy-Reddy, and Margo I Seltzer. 2006. Issues in

automatic provenance collection. In IPAW. Springer, Chicago, IL, USA, 171–183.

[14] Steven P Callahan, Juliana Freire, Emanuele Santos, Carlos Eduardo Scheidegger, Claudio T Silva, and Huy T Vo. 2006.

Managing the Evolution of Data�ows with VisTrails. In ICDE. IEEE, Atlanta, USA, 71–71.

[15] Adriane Chapman and HV Jagadish. 2010. Understanding provenance black boxes. Distributed and Parallel Databases

27, 2 (2010), 139–167.

[16] Amit Chavan, Silu Huang, Amol Deshpande, Aaron Elmore, Samuel Madden, and Aditya Parameswaran. 2015.

Towards a uni�ed query language for provenance and versioning. In TaPP. USENIX, Edinburgh, Scotland, 1–6.

[17] Artem Chebotko, John Abraham, Pearl Brazier, Anthony Piazza, Andrey Kashlev, and Shiyong Lu. 2013. Storing,

indexing and querying large provenance data sets as RDF graphs in apache HBase. In IEEE Congress on Services. IEEE,

Santa Clara, USA, 1–8.

[18] Artem Chebotko, Shiyong Lu, Xubo Fei, and Farshad Fotouhi. 2010. RDFProv: A relational RDF store for querying

and managing scienti�c work�ow provenance. Data & Knowledge Engineering 69, 8 (2010), 836–865.

[19] James Cheney, Amal Ahmed, and Umut A Acar. 2011. Provenance as dependency analysis. Mathematical Structures

in Computer Science 21, 06 (2011), 1301–1337.

[20] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2007. Provenance in Databases: Why, How, and Where.

Foundations and Trends in Databases 1, 4 (2007), 379–474.

[21] Fernando Chirigati, Dennis Shasha, and Juliana Freire. 2013. Reprozip: Using provenance to support computational

reproducibility. In TaPP. USENIX, Lombard, IL, USA, 977–980.

[22] Pavan Kumar Chittimalli and Ravindra Naik. 2014. Variable provenance in software systems. In International Workshop

on Recommendation Systems for Software Engineering. ACM, Hyderabad, India, 9–13.

[23] Jon Claerbout and Martin Karrenbach. 1992. Electronic documents give reproducible research a new meaning. In SEG.

SEG, New Orleans, Louisiana, USA, 601–604.

[24] Ben Cli�ord, Ian Foster, Jens-S Voeckler, Michael Wilde, and Yong Zhao. 2008. Tracking provenance in a virtual data

grid. Concurrency and Computation: Practice and Experience 20, 5 (2008), 565–575.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:34 J. F. Pimentel et al.

[25] Flavio Costa, Vítor Silva, Daniel De Oliveira, Kary Ocaña, Eduardo Ogasawara, Jonas Dias, and Marta Mattoso. 2013.

Capturing and querying work�ow runtime provenance with PROV: a practical approach. In EDBT/ICDT. ACM, Genoa,

Italy, 282–289.

[26] Sergio Manuel Serra da Cruz and José Antonio Pires do Nascimento. 2016. SisGExp: Rethinking Long-Tail Agronomic

Experiments. In IPAW. Springer, McLean, VA, USA, 214–217.

[27] Andrew Davison. 2012. Automated capture of experiment context for easier reproducibility in computational research.

Computing in Science & Engineering 14, 4 (2012), 48–56.

[28] Brian Demsky. 2009. Garm: cross application data provenance and policy enforcement. In HotSec, Vol. 9. USENIX,

Montreal, Canada, 10–10.

[29] Saumen Dey, Khalid Belhajjame, David Koop, Meghan Raul, and Bertram Ludäscher. 2015. Linking prospective and

retrospective provenance in scripts. In TaPP. USENIX, Edinburgh, Scotland, 1–7.

[30] Christian Dietrich and Daniel Lohmann. 2015. The dataref versuchung: Saving time through better internal repeata-

bility. SIGOPS Operating Systems Review 49, 1 (2015), 51–60.

[31] David L Donoho, Arian Maleki, Inam Ur Rahman, Morteza Shahram, and Victoria Stodden. 2009. Reproducible

research in computational harmonic analysis. Computing in Science & Engineering 11, 1 (2009), 8–18.

[32] Chris Drummond. 2009. Replicability is not reproducibility: nor is it good science. In ICML. International Machine

Learning Society, Montreal, CA, 1–4.

[33] Paul F Dubois. 1999. Ten good practices in scienti�c programming. Computing in Science & Engineering 1, 1 (1999),

7–11.

[34] Philip Eichinski and Paul Roe. 2016. Datatrack: An R package for managing data in a multi-stage experimental

work�ow. In eSoN. IEEE, Baltimore, Maryland, USA, 1–8.

[35] Jacky Estublier. 2000. Software Con�guration Management: A Roadmap. In ICSE. ACM, New York, USA, 279–289.

[36] Rosa Filguiera, Iraklis Klampanos, Amrey Krause, Mario David, Alexander Moreno, and Malcolm Atkinson. 2014.

Dispel4Py: A Python Framework for Data-intensive Scienti�c Computing. In DISCS. NJ, USA, 9–16.

[37] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T Silva. 2008. Provenance for computational tasks: A

survey. Computing in Science & Engineering 10, 3 (2008), 11–21.

[38] Juliana Freire, Cláudio T Silva, Steven P Callahan, Emanuele Santos, Carlos E Scheidegger, and Huy T Vo. 2006.

Managing rapidly-evolving scienti�c work�ows. In IPAW. Springer, Chicago, IL, USA, 10–18.

[39] James Frew. 2004. Earth System Science Server (ES3): Local Infrastructure for Earth Science Product Management. In

ESTC. NASA, Palo Alto, CA, 1–5.

[40] James Frew and Rajendra Bose. 2001. Earth system science workbench: A data management infrastructure for earth

science products. In SSDBM. IEEE, Fairfax, VA, U.S.A, 180–189.

[41] James Frew, Greg Janée, and Peter Slaughter. 2010. Automatic Provenance Collection and Publishing in a Science

Data Production Environment – Early Results. In IPAW. Springer, Troy, NY, USA, 27–33.

[42] James Frew, Greg Janée, and Peter Slaughter. 2011. Provenance-enabled automatic data publishing. In SSDBM. Springer,

Portland, OR, USA, 244–252.

[43] James Frew, Dominic Metzger, and Peter Slaughter. 2008. Automatic capture and reconstruction of computational

provenance. Concurrency and Computation: Practice and Experience 20, 5 (2008), 485–496.

[44] James Frew and Peter Slaughter. 2008. Es3: A demonstration of transparent provenance for scienti�c computation. In

IPAW. Springer, Salt Lake City, UT, USA, 200–207.

[45] Matan Gavish and David Donoho. 2011. A universal identi�er for computational results. Procedia Computer Science 4

(2011), 637–647.

[46] Ashish Gehani, Hasanat Kazmi, and Hassaan Irshad. 2016. Scaling spade to “big provenance”. In TaPP. USENIX

Association, McLean, USA, 26–33.

[47] Ashish Gehani and Dawood Tariq. 2012. SPADE: support for provenance auditing in distributed environments. In

International R User Conference. Springer-Verlag New York, Inc., Nashville, USA, 101–120.

[48] Ashish Gehani and Dawood Tariq. 2014. Provenance-only Integration. In TaPP. USENIX, Cologne, Germany, 1–8.

[49] Ashish Gehani, Dawood Tariq, Basim Baig, and Tanu Malik. 2011. Policy-based integration of provenance metadata.

In IEEE International Symposium on Policies for Distributed Systems and Networks. IEEE, Pisa, Italy, 149–152.

[50] Boris Glavic and Klaus R Dittrich. 2007. Data Provenance: A Categorization of Existing Approaches. In BTW. GI,

Aachen, Germany, 227–241.

[51] Klaus Gre� and Jürgen Schmidhuber. 2015. Introducing Sacred: A Tool to Facilitate Reproducible Research. In AutoML.

International Machine Learning Society, Lille, France, 1–6.

[52] Paul Groth, Simon Miles, and Luc Moreau. 2005. PReServ: Provenance recording for services. In UK e-Science All

Hands Meeting, Vol. 2005. EPSRC, Nottingham, UK, 1–8.

[53] Philip Jia Guo. 2012. Software tools to facilitate research programming. Ph.D. Dissertation. Stanford University, Stanford

University.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:35

[54] Philip J Guo and Dawson Engler. 2011. Using automatic persistent memoization to facilitate data analysis scripting.

In ISSTA. ACM, Toronto, ON, Canada, 287–297.

[55] Philip J Guo and Dawson R Engler. 2010. Towards Practical Incremental Recomputation for Scientists: An Implemen-

tation for the Python Language. In IPAW. Springer, Troy, NY, USA, 1–10.

[56] Philip J Guo and Dawson R Engler. 2011. CDE: Using System Call Interposition to Automatically Create Portable

Software Packages. In ATC. USENIX Association, Portland, OR, USA, 1–6.

[57] Philip J Guo and Margo Seltzer. 2012. BURRITO: Wrapping Your Lab Notebook in Computational Infrastructure. In

TaPP, Vol. 12. USENIX, Boston, MA, USA, 1–7.

[58] Brooks Hanson, Andrew Sugden, and Bruce Alberts. 2011. Making data maximally available. Science 331, 6018 (2011),

649–649.

[59] Rinke Hoekstra and Paul Groth. 2014. PROV-O-Viz-understanding the role of activities in provenance. In IPAW.

Springer, Cologne, Germany, 215–220.

[60] Mohammad Rezwanul Huq. 2013. An inference-based framework for managing data provenance. Ph.D. Dissertation.

University of Twente.

[61] Mohammad Rezwanul Huq, Peter MG Apers, and Andreas Wombacher. 2013. An inference-based framework to

manage data provenance in Geoscience Applications. IEEE Transactions on Geoscience and Remote Sensing 51, 11

(2013), 5113–5130.

[62] Mohammad Rezwanul Huq, Peter MG Apers, and Andreas Wombacher. 2013. ProvenanceCurious: a tool to infer data

provenance from scripts. In EDBT. ACM, Genoa, Italy, 765–768.

[63] John PA Ioannidis. 2005. Why most published research �ndings are false. PLOS Medicine 2, 8 (2005), e124.

[64] Keith R Jackson. 2002. pyGlobus: a Python interface to the Globus Toolkit™. Concurrency and Computation: Practice

and Experience 14, 13–15 (2002), 1075–1083.

[65] Samireh Jalali and Claes Wohlin. 2012. Systematic literature studies: database searches vs. backward snowballing. In

ESEM. ACM, Lund University, Sweden, 29–38.

[66] Matthew B Jones, Bertram Ludäscher, Timothy McPhillips, Paolo Missier, Christopher Schwalm, Peter Slaughter,

Dave Vieglais, Lauren Walker, and Yaxing Wei. 2016. DataONE: A Data Federation with Provenance Support. In

IPAW, Vol. 9672. Springer, McLean, VA, USA, 230.

[67] Mary Beth Kery. 2017. Tools to support exploratory programming with data. In IEEE Symposiumon Visual Languages

and Human-Centric Computing. IEEE, Raleigh, USA, 321–322.

[68] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting Exploratory Programming by Data

Scientists. In CHI. ACM, Denver, USA, 1–12.

[69] Donald E Knuth. 1984. Literate programming. Computer 1, 2 (1984), 97–111.

[70] Troy Kohwalter, Thiago Oliveira, Juliana Freire, Esteban Clua, and Leonardo Murta. 2016. Prov Viewer: a graph-based

visualization tool for interactive exploration of provenance data. In IPAW. Springer, McLean, VA, USA, 71–82.

[71] David Koop, Emanuele Santos, Bela Bauer, Matthias Troyer, Juliana Freire, and Cláudio T Silva. 2010. Bridging

work�ow and data provenance using strong links. In SSDBM, Vol. 28. Springer, Portland, OR, USA, 397–415.

[72] Johannes Köster and Sven Rahmann. 2012. Snakemake—a scalable bioinformatics work�ow engine. Bioinformatics

28, 19 (2012), 2520–2522.

[73] Hans Petter Langtangen. 2006. Python scripting for computational science (3rd ed.). Vol. 3. Springer, Berlin, Heidelberg

and New York.

[74] Barbara Lerner and Emery Boose. 2014. POSTER: RDataTracker and DDG Explorer. In IPAW. Springer, Cologne,

Germany, 1–3.

[75] Barbara Lerner and Emery Boose. 2014. RDataTracker: collecting provenance in an interactive scripting environment.

In TaPP. USENIX, Cologne, Germany, 1–4.

[76] Barbara Lerner, Emery Boose, and Luis Perez. 2018. Using Introspection to Collect Provenance in R. Informatics 5, 1

(2018), 12.

[77] Chunhyeok Lim, Shiyong Lu, Artem Chebotko, and Farshad Fotouhi. 2010. Prospective and retrospective provenance

collection in scienti�c work�ow environments. In SCC. IEEE, Miami, USA, 449–456.

[78] Chunhyeok Lim, Shiyong Lu, Artem Chebotko, Farshad Fotouhi, and Andrey Kashlev. 2013. OPQL: querying scienti�c

work�ow provenance at the graph level. Data and Knowledge Engineering 88, 0 (2013), 37–59.

[79] Cui Lin, Shiyong Lu, Xubo Fei, Artem Chebotko, Darshan Pai, Zhaoqiang Lai, Farshad Fotouhi, and Jing Hua. 2009. A

reference architecture for scienti�c work�ow management systems and the VIEW SOA solution. IEEE Transactions

on Services Computing 2, 1 (2009), 79–92.

[80] Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. 2015. A Survey of Data-Intensive Scienti�c Work�ow

Management. Journal of Grid Computing 13, 4 (2015), 457—-493.

[81] Cli�ord Lynch. 2000. Authenticity and integrity in the digital environment: an exploratory analysis of the central

role of trust. CLIR 32, 1 (2000), 1–84.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:36 J. F. Pimentel et al.

[82] Peter Macko and Margo Seltzer. 2012. A General-Purpose Provenance Library. In TaPP. USENIX, Boston, MA, USA,

1–6.

[83] Anderson Marinho, Marta Mattoso, Claudia Werner, Vanessa Braganholo, and Leonardo Murta. 2011. Challenges

in Managing Implicit and Abstract Provenance Data: Experiences with ProvManager. In TaPP. USENIX, Heraklion,

Crete, Greece, 1–6.

[84] Marta Mattoso, Jonas Dias, Kary ACS Ocaña, Eduardo Ogasawara, Flavio Costa, Felipe Horta, Vítor Silva, and Daniel

de Oliveira. 2015. Dynamic steering of HPC scienti�c work�ows: A survey. Future Generation Computer Systems 46

(2015), 100–113.

[85] Marta Mattoso, Claudia Werner, Guilherme Horta Travassos, Vanessa Braganholo, Eduardo Ogasawara, Daniel

Oliveira, Sergio Cruz, Wallace Martinho, and Leonardo Murta. 2010. Towards supporting the life cycle of large scale

scienti�c experiments. International Journal of Business Process Integration and Management 5, 1 (2010), 79–92.

[86] Timothy McPhillips, Shawn Bowers, Khalid Belhajjame, and Bertram Ludäscher. 2015. Retrospective provenance

without a runtime provenance recorder. In TaPP. USENIX, Edinburgh, Scotland, 1–7.

[87] Timothy McPhillips, Tianhong Song, Tyler Kolisnik, Steve Aulenbach, Khalid Belhajjame, Kyle Bocinsky, Yang Cao,

Fernando Chirigati, Saumen Dey, Juliana Freire, et al. 2015. YesWork�ow: a user-oriented, language-independent tool

for recovering work�ow information from scripts. International Journal of Digital Curation 10, 1 (2015), 298–313.

[88] Robert Meyer and Klaus Obermayer. 2015. pypet: a python toolkit for simulations and numerical experiments.

Neuroscience 16, Suppl 1 (2015), P184.

[89] Robert Meyer and Klaus Obermayer. 2016. pypet: A Python Toolkit for Data Management of Parameter Explorations.

Frontiers in Neuroinformatics 10 (2016), 1–16.

[90] Danius T Michaelides, Richard Parker, Chris Charlton, William J Browne, and Luc Moreau. 2016. Intermediate

Notation for Provenance and Work�ow Reproducibility. In IPAW. Springer, McLean, VA, USA, 83–94.

[91] Simon Miles, Paul Groth, Steve Munroe, and Luc Moreau. 2011. PrIMe: A methodology for developing provenance-

aware applications. ACM Transactions on Software Engineering and Methodology 20, 3 (2011), 8.

[92] Paolo Missier, Saumen Dey, Khalid Belhajjame, Víctor Cuevas-Vicenttín, and Bertram Ludäscher. 2013. D-PROV:

Extending the PROV Provenance Model with Work�ow Structure. In TaPP. USENIX, Lombard, IL, USA, 1–7.

[93] Scott Moore, Ashish Gehani, and Natarajan Shankar. 2013. Declaratively Processing Provenance Metadata. In TaPP.

USENIX, Lombard, IL, USA, 1–8.

[94] Luc Moreau, Ben Cli�ord, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia Kwasnikowska, Simon Miles,

Paolo Missier, Jim Myers, et al. 2011. The open provenance model core speci�cation (v1. 1). Future Generation

Computer Systems 27, 6 (2011), 743–756.

[95] Luc Moreau, Bertram Ludäscher, Ilkay Altintas, Roger S Barga, Shawn Bowers, Steven Callahan, George Chin, Ben

Cli�ord, Shirley Cohen, Sarah Cohen-Boulakia, et al. 2008. Special issue: The �rst provenance challenge. Concurrency

and Computation: Practice and Experience 20, 5 (2008), 409–418.

[96] Luc Moreau and Paolo Missier. 2012. PROV-DM: The PROV Data Model.

[97] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I Seltzer. 2006. Provenance-Aware Storage

Systems. In ATC. USENIX Association, Boston, USA, 43–56.

[98] Leonardo Murta, Vanessa Braganholo, Fernando Chirigati, David Koop, and Juliana Freire. 2014. noWork�ow:

capturing and analyzing provenance of scripts. In IPAW. Springer, Cologne, Germany, 71–83.

[99] Johnson Mwebaze, Danny Boxhoorn, and Edwin Valentijn. 2009. Astro-wise: Tracing and using lineage for scienti�c

data processing. In NBIS. IEEE, Indianapolis, USA, 475–480.

[100] Johnson Mwebaze, Danny Boxhoorn, and Edwin Valentijn. 2011. Dynamic Pipeline Changes in Scienti�c Data

Processing. In eSoN. IEEE, Stockholm, Sweden, 263–270.

[101] Wellington Oliveira, Daniel De Oliveira, and Vanessa Braganholo. 2018. Provenance Analytics for Work�ow-Based

Computational Experiments: A Survey. Comput. Surveys 51, 3 (2018), 53.

[102] John K Ousterhout. 1998. Scripting: Higher level programming for the 21st century. Computer 31, 3 (1998), 23–30.

[103] Christian Schou Oxvig, Thomas Arildsen, and Torben Larsen. 2016. Storing Reproducible Results from Computational

Experiments using Scienti�c Python Packages. In SciPy. SciPy, Austin, TX, USA, 45–50.

[104] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. Systematic Mapping Studies in Software

Engineering. In EASE, Vol. 8. ACM, University of Bari, Italy, 68–77.

[105] João Felipe Pimentel, Saumen Dey, Timothy McPhillips, Khalid Belhajjame, David Koop, Leonardo Murta, Vanessa

Braganholo, and Bertram Ludäscher. 2016. Yin & Yang: demonstrating complementary provenance from noWork�ow

& YesWork�ow. In IPAW. Springer, McLean, VA, USA, 161–165.

[106] João Felipe Pimentel, Juliana Freire, Vanessa Braganholo, and Leonardo Murta. 2016. Tracking and analyzing the

evolution of provenance from scripts. In IPAW. Springer, McLean, VA, USA, 16–28.

[107] João Felipe Pimentel, Juliana Freire, Leonardo Murta, and Vanessa Braganholo. 2016. Fine-grained provenance

collection over scripts through program slicing. In IPAW. Springer, McLean, VA, USA, 199–203.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Survey on Collecting, Managing, and Analyzing Provenance from Scripts 1:37

[108] Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire. 2017. noWork�ow: a tool for collecting,

analyzing, and managing provenance from python scripts. Very Large Data Bases 10, 12 (2017), 1841–1844.

[109] João Felipe Nicolaci Pimentel, Vanessa Braganholo, Leonardo Murta, and Juliana Freire. 2015. Collecting and analyzing

provenance on interactive notebooks: when IPython meets noWork�ow. In TaPP. USENIX, Edinburgh, Scotland, 1–6.

[110] João Felipe N Pimentel, Paolo Missier, Leonardo Murta, and Vanessa Braganholo. 2018. Versioned-PROV: A PROV

Extension to Support Mutable Data Entities. In IPAW. Springer, London, UK, 87–100.

[111] Raghu Ramakrishnan and Je�rey D Ullman. 1995. A survey of deductive database systems. The Journal of Logic

Programming 23, 2 (1995), 125–149.

[112] Andrew Runnalls and Chris Silles. 2012. Provenance tracking in R. In IPAW. Springer, Santa Barbara, CA, USA,

237–239.

[113] Andrew R Runnalls. 2011. Aspects of CXXR internals. Computational Statistics 26, 3 (2011), 427–442.

[114] Andrew R Runnalls and Chris A Silles. 2011. CXXR: An ideas hatchery for future R development. In JSM. AMSTAT,

Miama Beach, FL, USA, 1–9.

[115] Helen Shen et al. 2014. Interactive notebooks: Sharing the code. Nature 515, 7525 (2014), 151–152.

[116] Christopher Anthony Silles. 2014. Provenance-aware CXXR. Ph.D. Dissertation. University of Kent.

[117] Chris A Silles and Andrew R Runnalls. 2010. Provenance-awareness in R. In IPAW. Springer, Troy, NY, USA, 64–72.

[118] Yogesh L Simmhan, Beth Plale, and Dennis Gannon. 2005. A survey of data provenance in e-science. SIGMOD Record

34, 3 (2005), 31–36.

[119] Sébastien Sorlin and Christine Solnon. 2005. Reactive tabu search for measuring graph similarity. In IAPR. Springer,

Poitiers, France, 172–182.

[120] Manolis Stamatogiannakis, Paul Groth, andHerbert Bos. 2014. Looking inside the black-box: capturing data provenance

using dynamic instrumentation. In IPAW. Springer, Cologne, Germany, 155–167.

[121] Jean-Luc Richard Stevens, Marco Elver, and James A Bednar. 2013. An automated and reproducible work�ow for

running and analyzing neural simulations using Lancet and IPython Notebook. Frontiers in Neuroinformatics 7, 44

(2013), 44.

[122] Michael Stonebraker, Gerald Held, Eugene Wong, and Peter Kreps. 1976. The design and implementation of INGRES.

ACM Transactions on Database Systems 1, 3 (1976), 189–222.

[123] Wang Chiew Tan et al. 2007. Provenance in Databases: Past, Current, and Future. IEEE Data Engineering Bulletin 30, 4

(2007), 3–12.

[124] Dawood Tariq, Maisem Ali, and Ashish Gehani. 2012. Towards Automated Collection of Application-Level Data

Provenance. In TaPP. USENIX, Boston, MA, USA, 1–5.

[125] Håvar Valeur. 2005. Tracking the lineage of arbitrary processing sequences. Ph.D. Dissertation. Norwegian University

of Science and Technology, Trondheim.

[126] André Van der Hoek. 2004. Design-time product line architectures for any-time variability. Science of Computer

Programming 53, 3 (2004), 285–304.

[127] Jianwu Wang, Daniel Crawl, Shweta Purawat, Mai Nguyen, and Ilkay Altintas. 2015. Big data provenance: Challenges,

state of the art and opportunities. In BigData. IEEE, Santa Clara, USA, 2509–2516.

[128] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software

Engineering. , 10 pages.

[129] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David Withers, Stuart Owen, Stian Soiland-

Reyes, Ian Dunlop, Aleksandra Nenadic, Paul Fisher, et al. 2013. The Taverna work�ow suite: designing and executing

work�ows of Web Services on the desktop, web or in the cloud. Nucleic Acids ResearchW557, 61 (2013), W557–W561.

[130] Zhaogui Xu, Ju Qian, Lin Chen, Zhifei Chen, and Baowen Xu. 2013. Static Slicing for Python First-Class Objects. In

QSIC. IEEE, Nanjing, China, 117–124.

[131] Carlo Zaniolo. 1983. The database language GEM. SIGMOD Record 13, 4 (1983), 207–218.

[132] Yong Zhao, Mihael Hategan, Ben Cli�ord, Ian Foster, Gregor Von Laszewski, Veronika Nefedova, Ioan Raicu, Tiberiu

Stef-Praun, and Michael Wilde. 2007. Swift: Fast, reliable, loosely coupled parallel computation. In SERVICES. IEEE,

Salt Lake City, Utah, USA, 199–206.

[133] Yong Zhao and Shiyong Lu. 2008. A logic programming approach to scienti�c work�ow provenance querying. In

IPAW. Springer, Salt-Lake City, USA, 31–44.

[134] Yong Zhao, Michael Wilde, and Ian Foster. 2006. Applying the virtual data provenance model. In IPAW. Springer,

Chicago, Illinois, USA, 148–161.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

	Abstract
	1 Introduction
	2 A Taxonomy for Provenance from Scripts
	2.1 Provenance Collection
	2.2 Provenance Management
	2.3 Provenance Analysis
	2.4 Applicability to Other Provenance Systems

	3 State-of-the-Art Tools on Provenance from Scripts
	3.1 Provenance Collection
	3.2 Provenance Management
	3.3 Provenance Analysis
	3.4 Threats to Validity

	4 Conclusions
	References

