Odyssey-VCS: a Flexible Version Control System
for UML Model Elements

Hamilton Oliveira, Leonardo Murta, Claudia Werner

COPPE/UFRIJ - Systems Engineering and Computer Science Program
Federal University of Rio de Janeiro — P.O. Box 68511
21945-970 Rio de Janeiro, Brazil
{hamilton, murta, werner} @cos.uftj.br

Abstract. Many current version control systems use a simple data model that is
barely sufficient to manipulate source-code. This simple data model is not suf-
ficient to provide versioning capabilities for software modeling environments,
which are strongly focused on analysis and architectural design artifacts. In this
work, we introduce a flexible version control system for UML model elements.
This version control system, named Odyssey-VCS, deals with the complex data
model used by UML-based CASE tools. Moreover, it allows the configuration
of both the unit of versioning and unit of comparison for each specific project,
respecting the different needs of the diverse development scenarios.

1 Introduction

Computer Aided Software Engineering (CASE) tools can be classified into two main
groups [24]: lower CASE tools and upper CASE tools. Lower CASE tools are mostly
concerned about implementation and testing issues; whereas upper CASE tools deal
with higher abstraction levels, entailing requirements, analysis, and design artifacts.
Besides the necessity of Software Configuration Management (SCM) support for
every kind of CASE tool [21], this support has been typically focused on lower CASE
tools, providing a huge infrastructure over the last decades to leverage evolution of
source-code artifacts.

However, due to the increasing software development complexity, SCM support is
also needed by upper CASE tools. Model-driven development is emerging as a prom-
ising technique for complexity control. Model-driven approaches focus on the defini-
tion of high level models and apply subsequent transformations to obtain implementa-
tion artifacts. Nevertheless, the current SCM infrastructure does not properly support
the evolution of model-based artifacts.

A first thought would be to adapt the existing SCM techniques, formerly applied to
source-code, to this new context. However, current SCM infrastructures are not suited
to the coarse grained artifacts used by upper CASE tools. For example, most current
SCM systems are based on file system structures, while upper CASE tools are based
on higher level structures. The mapping of these complex structures used by upper
CASE tools to file structures is dangerous due to concept mismatch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

2 Oliviera et al.

Moreover, most SCM standards [10, 11] recommend the selective identification of
Configuration Items (CI) that depend on individual characteristics of the software
development projects. Nearly all state-of-the-practice SCM systems have a fixed iden-
tification of CI: the file. Due to this fact, every artifact that needs versioning informa-
tion should be stored into an individual file. However, in some circumstances it is
neither desirable nor possible to map every high level analysis and design artifact into
an individual file.

Aiming to diminish the effects of these problems, we propose a novel approach to
support UML-based upper CASE tools in evolving their artifacts. This approach,
named Odyssey-VCS, consists of a Version Control System (VCS) for UML model
elements that can be tailored to the specific needs of each software development pro-
ject, as recommended by SCM standards. The main goal of Odyssey-VCS is to aid
architects in the concurrent modeling of software systems using heterogeneous UML-
based upper CASE tools.

Odyssey-VCS maintains a per-project behavior descriptor that informs how each
UML model element type should be dealt. This behavior descriptor determines when
evolution information is needed for a UML model element, considering this element
as a CI. This evolution information comprises a unique version identification and
auxiliary contextual information, such as who changed the element, when it was
changed, and why it has been changed. Moreover, this behavior descriptor also indi-
cates which elements are considered atomic for conflict detection purpose. Odyssey-
VCS raises a conflict flag when two or more developers concurrently change an ele-
ment that is considered atomic.

During the design of our approach, we provided our own solutions to overcome
some challenges described in the SCM literature [5], such as: (1) data model that deals
with complex ClIs; (2) homogeneous versioning for different types of CIs; (3) distrib-
uted and heterogeneous workspaces; and (4) concurrent engineering with high level
models. Moreover, a guiding philosophy of our work is to adopt standardized solu-
tions and successful technologies used in other VCSs.

The rest of this paper is organized as follows. Section 2 details the problem to
ground the ensuing discussion. Section 3 presents an overview of Odyssey-VCS,
which is followed by a discussion of its internal mechanisms in Section 4. Section 5
shows a straightforward example that demonstrates how the challenges formerly dis-
cussed are addressed. Section 6 discusses related work, and we conclude the paper in
Section 7 with an outlook at our future work.

2 Problem Statement

VCSs that use a data model based on file system structures usually consider files and
directories as their Cls. This approach leads to three types of Cls: composite, textual
and binary. The first type, composite CI, is represented by directories and can aggre-
gate textual, binary or other composite CIs. The second type of CI, represented by text
files, is the most important type because it can be internally manipulated by the VCS
in order to execute basic version control operations, such as diff, patch and merge.

Odyssey-VCS: a Flexible Version Control System for UML Model Elements 3

The third type, binary files, is only controlled, but not internally manipulated by the
VCS since their internal structures are usually opaque to this tool.

For this reason, text files are seen by these VCSs as white box artifacts, and binary
files are seen as black box artifacts. In fact, the use of automatic merge facilities, even
for text files, is known to be an error prone activity [12]. They usually provide generic
merging algorithms that do not take into account the specific syntactic structure of the
text file. In spite of this limitation, almost all VCSs use text file mergers without dif-
ferentiating text file contents. For example, the same merge algorithm used with a flat
text file is also used with a Prolog file, a Java file, a LaTeX file or even an XML file.

Moreover, a common algorithm used by many tools to discover the type of a file is
based on control characters. This algorithm searches for a zero ASCII byte inside the
file. If this byte is found, the file is marked as a binary; otherwise, the file is marked as
a text. This algorithm is used, for example, by MS Visual SourceSafe [23]. Beyond
other problems related to the non existence of zero ASCII byte control code in some
binary files, all different kinds of text files will be marked as a flat text file. Neverthe-
less, few VCSs such as Rational ClearCase provide special support for different file
types (eg. mdl, doc, xml, etc.) and allow the usage of external mergers [26].

When a file is marked as a flat text file, the VCS considers a line as the unit of
comparison' (UC). As shown in Fig. 1.a, the UC used in a flat text file is mapped into
a paragraph. This is a well fitted mapping because a paragraph has enough cohesion
and relative low coupling with other paragraphs, and a defined structure composed by
a topic sentence and some supporting sentences. However, this is not the case in other
situations as follows:

— A Prolog file usually has complex facts and rules written using more than one
line. In this case, UC should be Prolog predicates.

— A Java file, as any other object-oriented language, has complex structures such
as packages, classes, methods, and attributes, with methods and attributes as
possible candidates to be UC.

— A LaTeX file does not use carriage return and linefeed as delimiters to a para-
graph structure. A blank line is needed to identify a paragraph. As a conse-
quence, UC should be the whole structure between blank lines.

— Finally, an XML file is a document composed of elements that may have other
elements and attributes by themselves. In this context, a reasonable UC would be
elements or attributes. An element or an attribute may be composed of many
lines and changes in any of these different lines should be considered as changes
in the same UC.

The use of line as UC is especially applicable in situations when a single line has
high cohesion and low coupling with other lines. Lines should not be used as UC in
files that employ data models with different abstraction structures. In the case of Java
files, if a line metaphor is used, UC is mapped to a non existing Java structure (Fig.

! We define unit of comparison as an atomic element used for conflict computation. Conflicts
occur when two or more developers concurrently work on any part of the same unit of com-
parison.

4 Oliviera et al.

1.b). A Java method may be implemented by more than one line; whereas a line may
comprise more than one Java command ended by a semicolon. In addition, a com-
mand is usually too excessively coupled to other commands to be considered a UC.
Hence, the indicated structure should be java attributes and methods.

(a) Flat text file (b) Java file (c) UML XMI file
coarse
grained Document @ Package Model <:E|
Paragraph <:£| Class Package
Phrase Method Class
ﬁpe J Word Command Operation
graine :l]

Fig. 1. Current UC applied to flat text files, Java files and UML XMI files.

As discussed before, some VCSs, such as Rational ClearCase, provide support for
different abstraction structures through a pluggable merge facility. This strategy, how-
ever, is not enough to provide this kind of support because the UC concept only helps
to set a boundary between file parts. In these systems, the whole file is considered to
be a unit of versioning? (UV). For example, in a flat text file, UC is a paragraph and
the UV is the whole document, as shown in Fig. 1.a.

This problem is more significant when the file type does not fit the abstraction
structure of the file system data model. For example, Java may have one or more
classes per file and these classes must be part of the same package, consequently, the
UV map to a non existing java element, as shown in Fig. 1.b. In this scenario, a pack-
age may have more than one UV distributed through different files, and a class may
share the same UV with other classes in the same file.

Java files are not the worst case. A convention may be established to recommend
the construction of only one class per file. In this way, UV would be mapped to the
class abstraction. Therefore, each class in the system would have their evolution con-
trolled individually. On the other hand, object oriented data model can also be made
persistent through files. One of the most common approaches to map an object-
oriented data model to a file is to use markup languages. In this case, the whole object
network is mapped into a singular file: an XML file. For instance, when Rational
ClearCase marks a file as XML, UC is changed and the merge and diff tools act in a

2 We define unit of versioning as an atomic element associated to versioning information. A
new version of the element is created when any part of it is modified.

Odyssey-VCS: a Flexible Version Control System for UML Model Elements

special way to provide more control over parallel development. However, UV remains
being the whole XML file.

In our specific case, UML-based upper CASE tools use an object-oriented data
model named Meta Object Facility (MOF) [18] and persist their models using XML
Metadata Interchange (XMI) format [20]. In this scenario, the whole object network,
composed of thousands of analysis and design artifacts, is persisted into a single XMI
file. Fig. 1.c shows a fragment of an UML class diagram mapped to an XMI file. UC
is smaller than an operation even if Rational ClearCase XML merge is used. This
occurs because a UML operation is described via many XML elements, which repre-
sent visibility, return type, arguments, etc., and the parallel development over different
XML sub-elements of the same UML operation would not conflict.

Another bad aspect related to UC in this scenario is regarding the proximity princi-
ple. UML uses an N-dimension structure composed by different diagrams to model
software, and this N-dimension structure is mapped to a single XMI file, which is a
one-dimension structure. This problem leverages the difficulty of implementing ge-
neric conflict detection algorithms. For example, two classes connected via inheri-
tance association are considered “near” in a UML model. However, if more than one
developer changes these classes concurrently, VCS would probably not be able to
detect a conflict because the classes are apart from each other in the XMI file.

The problems are even worse when analyzing the UV. UV in this case is the whole
UML model and it is not possible to distinguish versions of its parts, such as classes or
use cases. The upper CASE tools will only be able to select versions of the whole
model to work on. Therefore, the developers could not ask the VCS who changed a
specific use case two days ago or what the existing versions of a given class are.

3 Odyssey-VCS Overview

Aiming to diminish the effects of the problems presented in Section 2, we introduce
Odyssey-VCS, a flexible VCS for UML model elements. In this section we discuss the
high-level features of Odyssey-VCS and show how these features help to overcome
the challenges presented in Section 1.

3.1 Complex Data Model

Every upper CASE tool splits modeling elements into two categories: semantic and
syntactic elements. Semantic elements symbolize conceptual elements and contain all
information related to these elements, while syntactic elements are representations of
semantic elements inside a diagram and their data are diagram dependent, like color,
position, and size. In the context of the proposed approach, Cls are semantic elements
of UML-based upper CASE tools. To be more precise, any subtype of ModelElement
in the UML meta-model is a candidate to be CI in our approach. For this reason, Od-
yssey-VCS is able to version even the relationships among UML model elements,
since relationships are also model elements. Examples of these model elements are:
use cases, actors, classes, class associations, operations, attributes, components, etc.

6 Oliviera et al.

Due to the complexity of this data model, it is not desirable to have a single ver-
sioning behavior for every CI type. Moreover, most SCM standards recommend the
definition of a per-project SCM plan [10] and an important section of the SCM plan is
the CI identification. The CI identification section of the SCM plan describes all Cls
that should be placed under SCM. However, the current VCSs do not work with fine-
grained Cls. As a consequence of this problem, all artifacts are put under version
control, resulting in an extra overhead to the overall process, since some artifacts are
not supposed to be controlled.

Our approach allows a fine-grained definition of Cls. For example, a class may be
defined as an atomic CI for a given project; whereas operations and attributes may be
controlled in another project. This flexibility provided by Odyssey-VCS allows more
precise definition of CIs, adhering to the recommendations of existing SCM standards.

3.2 Homogeneous Versioning

As discussed before, the software development process deals with different kinds of
artifacts, such as: use case descriptions, use case diagrams, class diagrams, sequence
diagrams, code, test plans, test data, etc. All these artifacts must be controlled in a
consistent way to provide snapshots of the system in different moments of develop-
ment and maintenance. These snapshots when applied to a formal revision are called
baselines or system configurations.

A baseline can be seen as a version of the whole system. Each model element has
its own version, but the aggregation of these model elements has another version: the
baseline version. A problem related to most VCSs is the way they manage baselines.
Baselines are not seen as composite versions, but a structure with a completely differ-
ent semantic. It is a trouble in situations where only one baseline level is not suffi-
cient. Therefore, most current VCSs do not use version and baseline in a homogene-
ous way due to a lack of composite Cls.* A baseline is a special kind of CI, a compos-
ite one. It aggregates other Cls and its version is related to the versions of its parts. If a
new version is created for some part of a composite CI, a new version should also be
created for the whole CI.

In our approach both baselines and versions are dealt in the same way. If a CI is not
composed of other Cls, the notion of version is the conventional one. However, if
there is a composition relationship between Cls, the version of one CI depends on the
version of the other. This situation is comparable to the usage of baselines. The main
difference between the conventional approach and our approach is that in our case the
baseline is not another type of element, but a CI, too. For example, a UML model has
packages composed of classes and classes composed of attributes and operations. In
this scenario, a package can be seen as a baseline of all its classes, and a class can be
seen as a baseline of its attributes and operations. If one attribute is changed, a new
version of the class that encapsulates this attribute is also created, because the class
has been indirectly changed. Due to the new version of the class, the package that
contains this class will also receive a new version.

3 As an exception we can cite Subversion [3], which treats directories as composite Cls.

Odyssey-VCS: a Flexible Version Control System for UML Model Elements

This homogeneous way of treating baselines and versions allows future queries
over a specific package or class and complete reconstruction of any previous state,
with the correct set of attributes and operations. For instance, it is possible to ask for
the most recent version of the root CI of a system (i.e. UML model). Due to the uni-
form metaphor for versions and baseline, it is easy to transform this element into a
part of a bigger system because the whole system is seen by Odyssey-VCS as an ordi-
nary CI.

A possible drawback of this approach is the risk of an explosion of versions of
composite CIs. However, file-based VCSs that use this approach deal with this prob-
lem by applying hard-links to sub-Cls that have not changed. We also use this tech-
nique to avoid waste of storage space.

3.3 Distributed and Heterogeneous Workspaces

The usage of a universal format is a key feature to support heterogeneous workspaces,
maintained by different upper CASE tools. XMI is the most adopted format for both
commercial and academic UML-based upper CASE tools. For this reason, Odyssey-
VCS approach uses XMI as the protocol of communication between upper CASE
tools and the VCS. These tools can connect to Odyssey-VCS through the Internet and
query for a specific version of a CI, modify it and send back to Odyssey-VCS.

3.4 Concurrent Engineering

Odyssey-VCS is based on an optimistic strategy for concurrency control. The optimis-
tic strategy lets developers change the same model in parallel, and merge the changes
when the models are checked-in, as shown in Fig. 2. This strategy leverages parallel
work, but increases the complexity of merge algorithms, as detailed later in Section
4.2.

Original configuration
//cW— :
‘4¢— Other

1
User configuration :— check-ins

Current Configuration

Check-in

Merge

A 4

Final configuration

(a) Workspace (b) Repository

Fig. 2. Optimistic strategy for concurrency control

The original configuration shown in Fig. 2.b is the starting point of a new develop-
ment cycle. The User configuration is created when a given developer checks-out the

8 Oliviera et al.

original configuration and performs some changes. During this period of time, other
developers also work on the original configuration, merging their work into the cur-
rent configuration. Finally, the user configuration is also merged into the current con-
figuration, creating the final configuration.

When a conflict is detected during the merge procedure, the whole check-in is
rolled-back and the developer receives a message containing a detailed conflict de-
scription and the original, user and current configurations. After performing a manual
merge, which can be supported by external tools, the developer resubmits the UML
model to the repository.

4 Odyssey-VCS internals

The Odyssey-VCS architecture, which was implemented in Java from the scratch to
avoid dependencies to existing file-based VCSs, is composed of three major layers:
client, transport, and server. The most important element of the client layer, presented
in Fig. 3.a, is the upper CASE tool. We are assuming that this tool uses UML as mod-
eling notation and is able to externalize UML models using XMI. The integration
between the upper CASE tool and the Odyssey-VCS infrastructure can be done via
two alternative mechanisms: Odyssey-VCS plug-in and Odyssey-VCS client tool.
Some upper CASE tools offer an extension infrastructure that allows the addition of
external tools. In this case, Odyssey-VCS plug-in can be used, providing a seamless
integration. For instance, we adopted this mechanism to integrate Odyssey-VCS with
Odyssey environment [25]. However, some upper CASE tools have a poorly docu-
mented extension infrastructure, or do not even have it. In these situations, it is possi-
ble to use the Odyssey-VCS client tool. This tool opens an XMI file previously saved
by the upper CASE tool and allows the execution of Odyssey-VCS commands. This
mechanism was used to integrate Odyssey-VCS with Poseidon [1].

Odyssey-VCS Odyssey-VCS - - -
plugin
Upper Web :
CASE + or Services behavior
tool descriptor
Odyssey-VCS Internet MOF Repository | (XML)

client tool

(a) Client laver (b) Transport laver (c) Server laver

Fig. 3. Odyssey-VCS Overall Architecture

The transport layer, presented in Fig. 3.b, is responsible to allow distributed devel-
opment of UML models over the Internet. The current implementation of this layer
uses local calls or Web Services [2] as a transport protocol. However, it can be re-
placed by other protocols, such as WebDAV, RMI, sockets, etc. Moreover, before
being sent over the Internet, the XMI files pass through a compression layer (zlib) to
increase the overall throughput of the transport layer. This kind of approach, in place
of using deltas, is also being adopted by other SCM tools [6].

Odyssey-VCS: a Flexible Version Control System for UML Model Elements 9

Finally, the server layer processes the XMI files, applying different versioning be-
haviors depending on the project needs. The checked-in XMI file is transformed into
an object network, which is merged with existing objects and stored into a MOF Re-
pository named MDR [13] for further querying and retrieval. Both behavior configura-
tion and merge algorithm are presented in the next sections.

4.1 Behavior Configuration

When a UML model element is checked-in, a specific action should be performed.
However, as a flexible approach, Odyssey-VCS reads a behavior descriptor to decide
what to do. This behavior descriptor informs which elements are UC and UV. For
example, the scrap of a behavior descriptor shown in Fig. 4 is indicating that no ver-
sioning information should be stored for attributes and operations. On the other hand,
classes are considered as Cls (UV=true), meaning that every version should be regis-
tered. Moreover, classes are also considered atomic elements (UC=true). Due to that,
Odyssey-VCS will notify a conflict when two or more people edit the same class, even
if they are working in different parts of the class.

<type name="org.omg.uml.foundation.core.UmlClass”>
<UC>true</UC>
<UV>true</UV>

</type>

<type name="org.omg.uml.foundation.core.Attribute”>
<UC>true</UC>
<UV>false</UV>

</type>

<type name="org.omg.uml.foundation.core.Operation”>
<UC>true</UC>
<UV>false</UV>

</type>

Fig. 4. Scrap of a behavior descriptor XML file

It is important to notice that every software development project has its own behav-
ior descriptor. This allows the customization of Odyssey-VCS to the specific needs of
projects. For instance, if a project does not define class as UC, no conflict is detected
when two people work on different parts of it. On the other hand, if operation is set as
UV, every change on operations is registered together with versioning information.

Another important aspect is the interplay between UV and non-UV elements. Od-
yssey-VCS stores all physical versions of every element, but only stores logical ver-
sioning information of UV elements. For this reason, it is possible to correctly retrieve
the context relationships of a UV element, even if it is related to non-UV elements.

4.2 Merge Algorithm

A built-in merge algorithm is also provided together with the flexible versioning in-
frastructure. This merge algorithm takes into account the configurations shown in Fig.

10 Oliviera et al.

2. After analyzing the presence/absence of elements in these configurations, and the
internal values of these elements after a check-in, we reached a complex scenario that
is summarized in Table 1. The configurations and relations among them, used in Table
1, are defined as follows:

— O: Original configuration;

— U: User configuration;

— C: Current configuration;

— F: Final configuration;

— ex: Element “e” in configuration “X”’; and

— ex = ey: True if element “e” is identical in both configurations “X” and “Y™.

Table 1. Odyssey-VCS merge algorithm

Case|eeO|eeC|eeU|ep=ec|eo=ey Action

1 T T T T T Add ec (or ey) into F

2 T T T T F Add ey into F

3 T T T F T Add ec into F

4 T T T F F Notify a conflict: .

“concurrent changes over the same element
5 T T F T N/A None (do not add “e” into F)
6 T T F F NA | Notify a conflict: .
concurrent removal and change over the same element

7 T F T N/A T None (do not add “e” into F)

3 T F T N/A F Notify a conflict: ’
“concurrent removal and change over the same element’

9 T F F N/A N/A None (do not add “e” into F)

10 F T T N/A N/A N/A

11 F T F N/A N/A Add ec into F

12 F F T N/A N/A Add ey into F

13 F F F N/A N/A N/A

Table 1 shows, for every possible scenario, which action should be taken by Odys-
sey-VCS. For example, case 3 shows a scenario where a given element (use case, for
example) exists in all configurations (e € O, e € C, and e € U), was changed in the
current configuration (eg # ec), but was not touched in the user configuration (ep =
ey). In this case, Odyssey-VCS promotes the element from the current configuration to
the final configuration. On the other hand, case 6 shows a scenario where a given
element (an operation, for example) was removed from the user configuration (e ¢ U)
but exists in all other configurations (¢ € O, e € C). However, the element was
changed by other users (eo # ec). As a result to this scenario, Odyssey-VCS notifies a
conflict, arguing that the same element was removed and changed by different devel-
opers.

The results of the merge algorithm are consistent to the UML structure (guaranteed
by MDR repository), but may be inconsistent with UML well-formedness rules. The
current release of Odyssey-VCS does not apply well-formedness rules consistency
check. However, this validation can be obtained by external tools.

Odyssey-VCS: a Flexible Version Control System for UML Model Elements 11
S Example

In this section we present an intentionally simple usage example that aims to illustrate
how our approach provides flexibility and concurrent access during the evolution of
UML models. The target system of this usage example is a hotel network control sys-
tem presented in the literature.

Initially, suppose that Odyssey-VCS is configured as described in Table 2. It is im-
portant to notice that Class, a composite element that encloses Attributes and Opera-
tions, is configured as UC. In other words, this means that should two or more devel-
opers interact concomitantly over the same class, a conflict will happen. This conflict
occurs even if they are working on different parts of the class. Moreover, Actor is not
configured as UV. This means that no versioning information will be stored regarding
this element.

Table 2. Odyssey-VCS configuration

Element Unit of Versioning (UV) | Unit of Comparison (UC)
Model True False
Package True False
Class True True
Attribute True True
Operation True True
Use Case True True
Actor False True

After configuring the Odyssey-VCS system, an initial version of the model has
been committed to the repository. This initial version, shown in Fig. 5, comprises six
classes, all in the same package, four use cases, and one actor. This model is used as
the basis for further development.

Fig. 5. Hotel network control system use case and class models

In the following, two developers, namely John and Mary, are using different upper
CASE tools, respectively Poseidon and Odyssey, to concurrently change the initial
version of the hotel network control system model. John wants to rename the email
attribute of the Guest class to felephone, add the gender attribute into the Client class
and add a new use case named Modify Reservation. On the other hand, Mary wants to
change the type of the price attribute of the RoomType class from Float to Currency
and include two new operations in the Guest class: getEmail():String and setE-
mail(email:String):void.

12 Oliviera et al.

The changes performed by John, shown in Fig. 6.a, were committed first into the
repository. No conflicts were detected and the commit was successfully merged into
the current version of the repository. After John’s commit, the current version of
Guest class in the repository has no more the email attribute. However, the version of
the Guest class in the Mary workspace is out-of-date, still containing the email attrib-
ute, as shown in Fig. 6.b.

[%7] Poseidon for UML Community Edition - Untitled |3@‘@‘ (a)
Edit Wiew Create Diagram Align Grifig (b)
. @ B % %{ & e g . @ @ l = Model Environment - Hotel Netwerk
5] Package Centric Class dizaram_2 T, Table Dageam
|

[Fasiess come_ =] X (SezEc x| Eeslaleax~8saor]s]6)] ga],zg
@ 9 Hotal Netuo [= ® |- =» [| o |mpmnw|mm| 2|

B Class diagiam_2 Client S W et Metwork]

2= [java | — Emum Chorst Isatel

> B client _genderString [Festures View gromersr - e

= B cuet —{E] Buees View | | | -

= B Hetel [

2~ B Reservation =

> B Room = ? J| /

Guest o
telephone: String B et =
4 .@ fi, i Sirrg 1 T
(= Wity Resematians
|+ yeiEmal (). Sy

— O Query Hotels | Iz el Vi

= O guey Resenation [+ || <] 3
Drag model element 1) J - 1l | _:J'

Fig. 6. Poseidon (a) and Odyssey (b) working over the same UML model.

When Mary tries to commit her version, all UML model elements, but Guest class,
are correctly merged. Even the sub-elements of the Guest class were individually
merged successfully. However, besides their syntactical correctness, they are semanti-
cally incompatible, because the operations getEmail():String and setE-
mail(email:String):void were created to manipulate the email attribute, which was
renamed to felephone by John. Fortunately, Class type was defined as UC. Due to
that, a conflict is raised, as shown in Fig. 7.

Odyssey-VCS provides all necessary information to allow Mary fixing the conflict.
This information comprises, in addition to Mary’s local version of the model, the
original and the current versions of the repository. After manually fixing the conflict,
Mary is finally able to commit her changes into the repository. Fig. 8.b shows the final
state of the repository, which has the original version of the model (version 1), John’s
commit (version 2) and Mary’s commit (version 3).

Fig. 8.a shows the third version of the model in Mary’s workspace, after a new
check-out. This third version contemplates the original intention of both John and
Mary. It is worth to notice that every version that is relative to a type defined as UV in
Table 2 has contextual information when stored in the repository. This contextual
information, which encloses date, responsible, and additional comments, can be fur-
ther used by other developers. However, Actor was not defined as UV. For this rea-
son, its versions are neither shown in Fig. 8 nor computed by Odyssey-VCS.

Odyssey-VCS: a Flexible Version Control System for UML Model Elements

13

John’s
Guest
workspace -
-telephone: String
f \
| \
Repository } Guest
Guest Guest -telephone: String
-email : String —_ .} elephone:String |— e= s —_———_————— .} -email : String
~
AN +getEmail ():String
Guest 6 > +setEmail (email :String):void
Conflict! =5 | telephone: String A
Za A -
P P V +getEmail ():String I
ary’s Gueet +setEmail (email :String):void Guest
workspace — N -telephone: String
-email : String —~ - » il : Stri
P | -email : String
+getEmail ():String +getEmail ():String
+setEmail (email :String):void +setEmail (email :String):void

‘w Model Environment - Hotel Network

Fig. 7. Merge and conflict detection scenario

Lo

(b £ 0dyssey-vcs

AL

L1

File Tools Diagram ®
plE x| E e s #alca x|~ elale|o|r|)] na] =]
T
« |- B ||l ciess Disgrem | piagram Properties | Adstionsl Documerts |
=T Hotel Network
~[S] Context view Client Hotel
~[B] Features view I
~[E] Business View - name : String - name : String =
=-[S] Use Case View - gender; String 1 !
2 Mosify Reservation
-3 Query Hotels
- Query Reservation 1 0.1
-2 Cancel Reservation
-2 Make Reservation % .
% Guest n
-
E Guest Reseruation Ro
B Reservation - telephone : String » | code it ——rname
& RoomType - email - String. P 1 gnrice
- 2 Room + getEmall (12 String L
=N + setEmail (String:email) | Void -
- B Guest
- B Client
+-[= Component Yiew

onfiguration tens - Repastory

B code (v.1)

B2 Reservation v.1)
B name (v1)

B number tv1y
B2 Room (w1)

& Cliert (v.2)
-3 telephone (v2)
B price (v3)
B2 RoomType (v.3)
B cetEmai (v.3)

Hatel Netvrork (v.1)
Hotel Netvrork (v.2)
Hotel Netvrork (v.3)

B rame vy

B Hetel (v 1)

B rame (v.1)

S @uery Hotels (v.1)

O Query Reservation (v.1)
O cancel Reservation (v.1)
2 Make Reservation (v.1)
 Modify Reservation (v.2)
B Use Case View (v.2)

B gender (v2)

B setEmail (v3)

B erai (v.3)

B cuest(v3)

B3 Structural view (v.3)

Check-out Close

Fig. 8. Odyssey (a) performing check-out through Odyssey-VCS plugin (b)

6

Related Work

Most commercial and open-source VCS are based on file system data model [3, 7, 23,
26]. As previously discussed, these VCS have several limitations to manipulate arti-
facts with complex internal data model. However, these solutions are generic and
mature, being suitable for versioning of text-based artifacts. We do not see these ap-
proaches as direct competitors of our approach. Our approach can be used to version

14 Oliviera et al.

UML model elements while these approaches can be used to version source-code in
the same software development project.

There are also other approaches that employ other data models, such as entity-
relationship or even object oriented. However, these approaches work at source code
level and are focused on a specific programming language. For instance, Goldstein et
al. [8], Habermann et al. [9], and Render et al. [22] support versioning of Smalltalk, C
and Pascal source code, respectively. Our approach can also be seen as complemen-
tary to these approaches since we are focused on UML model elements and these
approaches are focused on source-code.

Some few approaches use non file system data model to version analysis and design
artifacts. For instance, Ohst et al. [17] propose an approach for versioning analysis
and design artifacts via syntax trees stored in XML files. Working at fine grained
UML artifacts they can correctly manage structural changes on these artifacts. How-
ever, the usage of XML does not mean adherence to modeling standards. Their XML
format does not follow XMI specification for UML, leading to incompatibilities with
existing UML-based upper CASE tools. Moreover, Nguyen et al. [16] use a hyper-
versioning system to apply version control over complex artifacts, including UML
analysis and design artifacts. This work has a strong focus on versioning relationships
among the elements. However, it is also based on a proprietary UML data model,
reducing compatibility with existing upper CASE tools.

Finally, OMG is working on a specification for MOF versioning [19]. Besides the
nonexistence of a final specification version up to now, it is possible to notice that
Odyssey-VCS is pretty adherent to the specification philosophy. Similar to the specifi-
cation, Odyssey-VCS has its own versioning meta-model. Moreover, it stores the
versioned elements into separate per-version extents with associated history of
changes. Probably, it will be straightforward to adhere to the final version of the speci-
fication in the future.

7 Conclusion

In this paper we presented an approach for version control of UML model elements.
Our approach differs from the existing approaches in the following aspects. First, we
provide support for flexibility during CI identification, allowing the configuration of
UC and UV for UML model elements. Second, our approach is based on well adopted
standards, raising the compatibility with existing upper CASE tools. Finally we have
focused on current challenges of SCM to avoid reinventing the wheel regarding al-
ready solved problems. Besides these main aspects, our approach also provides a
built-in merge algorithm, supporting concurrent development.

The existence of a fine-grained VCS for UML model elements can be seen as the
basis for upcoming work. For instance, Dantas et al. [4] have proposed an approach
for traceability link detection via data mining over UML model elements stored in the
Odyssey-VCS repository. Moreover, another work is being performed to transform
Odyssey-VCS into a change-oriented VCS [15]. All these tools are part of a broader

Odyssey-VCS: a Flexible Version Control System for UML Model Elements 15

infrastructure named Odyssey-SCM [14], which aims to provide SCM functionalities
for component-based development environments.

Our approach, however, is currently tightly coupled to the UML meta-model. An
important future work is the generalization to the MOF meta-model layer, allowing
versioning of any MOF compliant meta-model. Additionally, the current version of
Odyssey-VCS does not use deltas to compose versions. On one hand, the negative
impact of this decision is higher network traffic. On the other hand, we do not need to
compute a version based on prior versions and deltas, which saves some CPU cycles.
We also use zlib to help reducing the transport overhead due to the absence of deltas.
While performance and scalability were not a major concern for this first prototype,
we intend to work on these issues for the next releases. Currently, we are performing
some benchmarks to measure the performance of Odyssey-VCS when the size of the
repository increases. After that, we intend to run some case studies in real software
development scenarios.

Moreover, another limitation is the use of a predefined merge algorithm. Future re-
leases of Odyssey-VCS should allow the replacement of the built-in merge algorithm
for project-specific merge algorithms. Another future work is the construction of a
tool that allows visual merge of UML models. The current version of Odyssey-VCS
only notifies the conflict, providing all information for the merge. However, the merge
itself is not supported by Odyssey-VCS, requiring the user to do it directly in the XMI
file or using existing UML-based upper CASE tools.

Acknowledgments

Our thanks to the members of the Software Reuse Group at COPPE/UFRIJ, especially
Cristine Dantas and Luiz Gustavo Lopes, who helped in many discussions regarding
the architecture of the approach. Moreover, we would like to thank CNPq and CAPES
for the financial support.

References

1. Boger, M., Sturm, T., Schildhauer, E., and Graham, E.: Poseidon for UML user guide.
Gentleware AG (2000)

2. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and Orchard,
D.: Web Services Architecture - W3C Working Group Note. World Wide Web Consortium
(W3Q). In: http://www.w3.org/TR/ws-arch, Accessed in: 25/Jul/2005

3. Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M.: Version Control with Subver-
sion. O'Reilly (2004)

4. Dantas, C. R., Murta, L. G. P., and Werner, C. M. L.: Consistent Evolution of UML Mod-
els by Automatic Detection of Change Traces. International Workshop on Principles of
Software Evolution (IWPSE), Lisbon, Portugal, September (2005)

5. Estublier, J.: Software Configuration Management: a Roadmap. International Conference
on Software Engineering, The Future of Software Engineering, Limerick, Ireland, June
(2000) 279-289

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

23.
24.

25.

26.

Oliviera et al.

Estublier, J., Leblang, D., Clemm, G., Conradi, R., Tichy, W., van der Hoek, A., and Wi-
borg-Weber, D.: Impact of the research community on the field of software configuration
management: summary of an impact project report. ACM SIGSOFT Software Engineering
Notes, Vol. 27, no. 5, September (2002) 31-39

Fogel, K. and Bar, M.: Open Source Development with CVS. The Coriolis Group, Scotts-
dale, Arizona (2001)

Goldstein, 1. P. and Bobrow, D. G.: A Layered Approach to Software Design. In: Barstow,
D. R., Shrobe, H. E., and Sandewall, E. (eds.): Interactive Programming Environments.
McGraw-Hill, New York, NY (1984) 387-413

Habermann, A. N. and Notkin, D.: Gandalf: Software Development Environments. Trans-
actions on Software Engineering, Vol. 12, no. 12, December (1986) 1117-1127

IEEE: Std 1042 - IEEE Guide to Software Configuration Management. Institute of Electri-
cal and Electronics Engineers (1987)

ISO: ISO 10007, Quality Management - Guidelines for Configuration Management. Inter-
national Organization for Standardization (1995)

Leon, A.: A Guide to Software Configuration Management. Artech House Publishers,
Norwood, MA (2000)

Matula, M.: NetBeans Metadata Repository. NetBeans Community. In:
http://mdr.netbeans.org, Accessed in: 25/Jul/2005

Murta, L. G. P., Dantas, C. R., Oliveira, H. L. R., Lopes, L. G. B., and Werner, C. M. L.:
Odyssey-SCM. In: http://reuse.cos.uftj.br/odyssey/scm, Accessed in: 25/Jul/2005

Murta, L. G. P., Oliveira, H. L. R., Dantas, C. R., Lopes, L. G. B., and Werner, C. M. L.:
Towards Component-based Software Maintenance via Software Configuration Manage-
ment Techniques. Workshop on Modern Software Maintenance (WMSWM), Brasilia, Bra-
zil, October (2004)

Nguyen, T. N., Munson, E. V., and Boyland, J. T.: The molhado hypertext versioning
system. Conference on Hypertext and Hypermedia, Santa Cruz, USA, August (2004) 185-
194

Ohst, D. and Kelter, U.: A Fine-grained Version and Configuration Model in Analysis and
Design. International Conference on Software Maintenance (ICSM), Montreal, Canada,
October (2002) 521-527

OMG: Meta Object Facility (MOF) Specification, version 1.4. Object Management Group.
In: http://www.omg.org/technology/documents/formal/mof.htm, Accessed in: 25/Jul/2005
OMG: MOF 2.0 Versioning and Development Lifecycle RFP. In: http://www.omg.org/cgi-
bin/doc?ad/02-06-23, Accessed in: 25/Jul/2005

OMG: XML Metadata Interchange (XMI) Specification, Version 2.0. Object Management

Group. In: http://www.omg.org/technology/documents/formal/xmi.htm, Accessed in:
25/Jul/2005

. Pressman, R. S.: Software Engineering: A Practitioner's Approach. McGraw-Hill (1997)
22.

Render, H. and Campbell, R.: An Object-oriented Model of Software Configuration Man-
agement. International Workshop on Software Configuration Management, Trondheim,
Norway, June (1991) 127-139

Roche, T. and Whipple, L. C.: Essential SourceSafe. Hentzenwerke Publishing (2001)
Voelcker, J.: Automating Software: Proceed with Caution. IEEE Spectrum, Vol. 25, no. 7,
July (1988) 25-27

Werner, C. M. L., Mangan, M. A. S., Murta, L. G. P., Souza, R. P., Mattoso, M., Braga, R.
M. M., and Borges, M. R. S.: OdysseyShare: an Environment for Collaborative Compo-
nent-Based Development. IEEE Conference on Information Reuse and Integration (IRI),
Las Vegas, USA, October (2003) 61-68

White, B. A.: Software Configuration Management Strategies and Rational ClearCase: A
Practical Introduction. Addison-Wesley (2000)

