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Abstract—Scientific experiments based on computer 

simulations usually consume and produce huge amounts of data. 

Data provenance is used to help scientists answer queries related 

to how experiment data were generated or changed. However, 

during the experiment execution, data not explicitly referenced 

by the experiment specification may lead to an implicit data flow 

missed by the existing provenance gathering infrastructures. This 

paper introduces a novel approach to gather and store implicit 

data flow provenance through configuration management. Our 

approach opens some new opportunities in terms of provenance 

analysis, such as identifying implicit data flows, identifying data 

transformations along an experiment trial, comparing data 

evolution in different trials of the same experiment, and 

identifying side effects on data evolution caused by implicit data 

flows.  

Index Terms—implicit data flows, provenance, scientific 

workflow, scientific experiment, configuration management.  

I. INTRODUCTION 

Scientific workflows have been extensively used to 

represent experiments that are based on complex computer 

simulations. These scientific workflows consume and produce 

huge amounts of data. In this context, data provenance [1] 

helps scientists answer queries related to experiment data 

transformation (e.g., “How were data generated or changed?”). 
Similarly to art artifacts provenance, data provenance is the 

historical information about data ownership and 

transformations. Such information can be gathered through 

three main strategies: (1) inspecting the operating system to 

capture all system calls during workflow execution (not direct 

related with the workflow notation), (2) inspecting the 

workflow during its execution to register produced and 

consumed data, or (3) instrumenting each workflow activity to 

correlate produced data with the processes responsible for the 

data production. 

However, during the workflow execution, data not 

explicitly referenced by the workflow specification can be 

created, changed, or accessed, leading to an implicit data flow 

[2]. Provenance of such information can be useful to help 

scientists to identify and understand the influence of these 

implicit data flows. Unfortunately, most of the existing 

provenance gathering approaches are not able to capture this 

kind of provenance [1]–[4]. The few exceptions that capture 

such kind of provenance do not contextualize it with the 

activities in the workflow specification [5], [6].  

This paper introduces a novel approach to gather and store 

provenance data related to implicit data flow through 

Configuration Management (CM). CM is a discipline used for 

controlling software evolution [7]. It is capable of identifying 

and registering changes on configuration items (i.e., artifacts 

under CM), relating these changes with the issue that motivated 

them. By seeing experiment data as configuration items, it is 

possible to identify some similarities between provenance 

management and CM. Indeed, provenance is about identifying 

changes on experiment data (configuration items, in the CM 

terminology) that were motivated or generated by experiment 

activities (issues, in the CM terminology). Looking through this 

perspective, CM becomes a promising approach to provenance 

management.  

Our approach goes in this direction, using the workflow 

specification as a source of issues to be tracked, and a 

distributed version control system (VCS) as a CM tool for 

gathering implicit data flow provenance. This allows tracking 

changes on files, for each experiment execution, identifying 

which activities were responsible for these changes. This way, 

tracked changes include not only explicit data flows, but also 

the implicit ones, which are our main motivation.  

This paper is structured as follows. Section 2 presents a 

discussion about provenance and implicit data flow. Then, 

Section 3 defines implicit provenance and presents our vision 

of provenance management through CM. Section 4 describes 

our approach, introducing a usage example. Section 5 presents 

related work. Finally, Section 6 concludes this paper with a 

discussion about future work. 

II. BACKGROUND AND PROBLEM STATEMENT 

There are two forms of provenance in the context of 

scientific experiments [1]: prospective and retrospective 

provenance. Prospective provenance refers to the workflow 

specification. It specifies the activities (i.e., steps or tasks) to be 

executed to generate the expected results. On the other hand, 

retrospective provenance refers to the workflow execution. It 

captures executed activities and information about the 
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environment used for data transformation. It works as an 

experiment execution log. 

Provenance gathering mechanisms can be classified in three 

different classes [1]: workflow-based, activity-based, or 

operation system-based (OS). Workflow-based mechanisms are 

the built-in infrastructure for provenance gathering in Scientific 

Workflow Management Systems (SWfMS). In this case, the 

SWfMS becomes responsible for gathering provenance 

information. By knowing the workflow specification and 

controlling its execution, these approaches are capable of 

capturing both prospective and retrospective provenance. 

However, they are SWfMS dependent, making it difficult to 

integrate provenance collected from different workflows that 

compose the same experiment. Moreover, these approaches can 

only capture provenance of data that were explicitly specified 

in the workflow, thus missing implicit data flows. 

Activity-based mechanisms adapt workflow activities, 

making them able to gather their own provenance. These 

approaches are capable of gathering both prospective and 

retrospective provenance and can be SWfMS independent. The 

cons are the activity instrumentation difficulties and overhead. 

Some activities are not easily adapted and are wrapped as black 

boxes. In such situation, the content of an activity and its input 

and output data may not be explicitly specified, also leading to 

implicit data flows misses during provenance gathering.  

Finally, OS-based mechanisms rely only on the OS 

environment’s ability to capture data and dependencies among 

processes and data. These approaches are SWfMS independent, 

do not require any workflow adaptation, and are able to capture 

provenance even when implicit data flows are in place. 

However, they only capture retrospective provenance. 

Gathering provenance trough OS leads to fine-grained 

information about all system calls and files touched during the 

workflow execution. The large amount of retrospective data 

can make these approaches prohibitive when scientists want to 

understand the experiment trial in terms of the activities 

specified in the workflow (i.e., prospective provenance). 

Despite the best efforts of scientists to specify all the 

experiment details into the workflow, there are some situations 

where workflow activities specification are not complete in 

terms of consumed and produced data. In such situations, some 

activities’ inputs and outputs that are not declared in the 

specification manifest during the workflow execution. Fig. 1 

illustrates an example of such situation. 

According to Fig. 1, the workflow activity UnzipFile 

transmits data to activity ApplyFilter through a shared file 

(Img.bmp). The workflow specification, however, does not 

register this information. Activities ApplyFilter and 

CutInterestingArea also exchange information through the 

same file. Again, the workflow specification does not register 

this information. Instead, it only specifies that activity 

ApplyFilter sends a pair of values to activity CutInteresingArea 

({“circle”,2}). In this case, other problem arises: the 
consecutive changes over the same file overwrite data 

generated by the previously executed activities. Finally, 

activities CutInteresingArea and IdentifyPhenomenon illustrate 

the ideal scenario for provenance management, since the file 

they use is explicitly defined in the workflow specification 

(“c:\wksp\ImgCut.bmp”). Even in this last case, some problems 

may still arise. Again, if the file name does not change for each 

workflow execution, all the data generated in previous 

executions will be lost or altered.  

 
Fig. 1. Implicit provenance example: different domains data flows [2]. 

Furthermore, Fig. 1 illustrates that two data flows occur in 

parallel when the workflow specification does not explicitly 

declare all related data. The first one occurs in the 

SWfMS/workflow domain, presenting data explicitly declared 

by the workflow that the SWfMS can collect. The other data 

flow occurs in the operation system (OS) domain. It is an 

implicit data flow, since it is not declared in the workflow 

specification, but it still influences the results of the 

experiment. 

III. IMPLICIT PROVENANCE MANAGEMENT THROUGH CM 

Implicit data flows can influence experiment results. Since 

they occur implicitly, their effects may remain hidden from 

scientists, leading to misleading analyses. Implicit data flow 

provenance, or simply implicit provenance (ImP), can be useful 

to help scientists identify or understand possible hidden 

influence of implicit data flows. In addition, it serves as an 

evidence of implicit dependencies amongst workflow activities. 

Identify such dependencies can provide hints on how to 

distribute an experiment in different sites or even on how 

remodel it to eliminate this dependence. 

The perception of implicit data flows relies on the 

knowledge of the explicit data flow. In fact, ImP can be defined 

as the retrospective implicit data flow provenance related to its 

prospective provenance. Thus, an ImP gathering mechanism 

must rely on both workflow and OS domains. 

According to Koop et al. [4], a tighter integration between 

scientific workflows and file management (OS domain) is 

necessary to enable the systematic maintenance of data 

provenance. Provenance maintenance entails avoiding 

provenance loss in multiple consecutive trials that overwrite 

files. An example of such multiple consecutive trials is 

parameter sweeping, where the same workflow is executed 

repeatedly with minor changes in its parameters. At the end, the 

best execution is chosen, and provenance helps to explain the 

obtained results. This reinforces the necessity of preserving 

data generated during the workflow execution. 

In the CM field, VCS are responsible for managing the 

different versions of configuration items. Koop et al. [4] state 

that VCS capture the changes, but not why these changes 

occurred. Indeed, CM uses another system responsible for 
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storing such information: issue-tracking systems (ITS). 

Usually, each issue is associated with the configuration item 

versions produced during the issue fix. This integrated CM 

infrastructure can lead to a complete perception of when, how, 

where, what, why, and by who a configuration item version 

was created [8]. In the context of workflow provenance data, 

the workflow specification defines the issues that motivate 

changing artifacts. Relating provenance data with the workflow 

activity that generated it is equivalent to relating a VCS check-

in with its respective issue in the ITS. 

There are four main steps for provenance management 

through CM: identify the issues to be tracked (prospective 

provenance register), generate an experiment execution 

identifier (i.e., trial id), prepare the workspace for the 

execution, and gather the retrospective provenance, relating it 

to correspondent prospective provenance. First, prospective 

provenance must be gathered. Once identified, workflow 

activities can be treated as issues by retrospective provenance. 

Then, an experiment identifier must be generated to be possible 

to identify the tuple {trial id, activity id} that produced the 

retrospective data during execution. After that, the workspace 

must be prepared to allow ImP gathering. This preparation 

involves creating a new workspace or cloning an existing one 

from a central repository, and generating a branch for the 

execution. Finally, at the end of each activity a check-in must 

be triggered to register the new version of every changed 

artifact, relating it to the tuple {trial id, activity id}. 

IV. THE PROVMONITOR APPROACH 

This vision of provenance management through CM 

motivated us to conceive a novel approach called ProvMonitor. 

This provenance gathering mechanism uses Git [9] VCS to 

capture and store retrospective provenance, including ImP. The 

ProvMonitor implementation is integrated with ProvManager 

[3], an activity-based provenance gathering mechanism that 

works through automatic workflow instrumentation. This way, 

each activity becomes responsible for gathering its own 

provenance.  

A. ProvManager 

During the workflow instrumentation, the ProvManager 

approach collects prospective provenance and automatically 

wraps the workflow activities into composite activities. These 

composite activities consist on the original activity and some 

provenance gathering activities (PGA). The PGAs are 

responsible to gather retrospective provenance during the 

workflow execution.  

It works as follows: the scientist uploads the workflow 

specification to the ProvManager. The prospective provenance 

is gathered while workflow activities are automatically 

wrapped with PGAs. Then, scientists download the 

instrumented workflow specification, which is used to execute 

the experiment. During the workflow execution, the wrapped 

activities gather the retrospective provenance through the PGA 

and send it via Web Services to the ProvManager central 

provenance repository. As discussed, ProvManager alone is not 

capable of gathering ImP. Actually, even the content of files 

referenced in the workflow specification is missed. Our 

approach introduces ImP aware PGAs in ProvManager. 

B. ProvMonitor 

During prospective provenance gathering, performed by 

ProvManager, ProvMonitor instruments the workflow with CM 

commands embedded in the PGAs. This allows ProvMonitor to 

work during the workflow execution, gathering the 

retrospective provenance and associating it with the previously 

collected prospective provenance.  

Fig. 2 illustrates how ProvMonitor gathers retrospective 

provenance. At the beginning of the workflow execution, 

ProvMonitor generates a trial id and prepares the workspace by 

cloning the needed input files from a central repository and by 

generating a branch for the current workflow execution. Then, 

at the end of each activity, ProvMonitor identifies the accessed 

files and triggers a check-in, relating the accessed and changed 

files with the activity that triggered the PGA. At the end of 

execution, the branch is pushed back to the central repository, 

making it available for further analysis. As ProvMonitor works 

managing the workspace, every change in the configuration 

items are caught by the check-ins, even if it is not explicitly 

defined in the workflow specification. 

 

Fig. 2. ProvMonitor gathering process 

Fig. 3 presents a usage example of ProvMonitor approach 

based on the workflow depicted in Fig. 1. As previously 

discussed, this workflow has implicit data flows that could lead 

the scientist to a misleading analysis. However, at the end of 

each activity execution, ProvMonitor catches all changes inside 

the workspace and identifies each file accessed during the 

activity execution. For instance, it is possible to observe that 

the UnzipFile activity created Img.bmp and, subsequently, 

ApplyFilter changed the same file. This opens opportunity to 

use specialized diff algorithms [10]–[13] and precisely identify 

the differences among versions. This kind of analysis is useful 

to identify the effects of a specific activity over the data. 

 
Fig. 3. Activities executions changes through trials 
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Additionally, the ImP can also be observed across trials. 

For instance, the before mentioned specialized diff algorithms 

can be used to compare v1trial 1 and v1trial n of ImaCut.bmp file, 

both produced by CutInterestingArea activity, but in different 

experiment trials and, consequently, stored in different 

branches. This kind of analysis is useful to comprehend the 

effects of parameter sweeping on intermediate data. 

V. RELATED WORK 

Until now, ImP has received low attention in the literature. 

Actually, ImP is missed by existing provenance approaches, 

except the OS-based gathering approaches [5], [6]. However, 

they do not relate prospective and retrospective provenance. 

Furthermore, the fine granularity of their gathering mechanism 

leads to a very large amount of provenance data. Our approach 

tries to minimize the amount of data by working into a 

delimited workspace and being triggered by workflow 

activities. Doing so, it works at the OS domain, but surrounded 

by the workflow activities (Workflow domain).  

The ProvManager [3] approach, as previously discussed, 

works by adapting workflow activities. It minimizes the 

overhead of activities instrumentation via an automatic 

adaptation process. However, it cannot capture ImP and misses 

even referenced file content. ProvMonitor is an extension of the 

ProvManager gathering mechanism that fixes such limitations. 

The Strong link approach [4] presents a framework that 

uses VCS to create strong links between the experiment and its 

provenance data. It is able to capture referenced file content, 

but misses ImP when workflow specification does not 

explicitly reference the files. Strong Links adopts a cache 

mechanism based on Git to optimize workflow executions. 

ProvMonitor also uses Git for storing file content separated 

from the workspace structure, optimizing persistence and 

leading to file moves detection. The main difference is that we 

capture retrospective provenance even when it is not specified 

in the prospective provenance. Furthermore, we do not provide 

a cache system. Cache systems are interesting to optimize 

executions in deterministic environments. However, it is risky 

to suppose determinism in experiments with implicit data 

flows, since different executions can lead to different results 

due to implicit data flow side effects. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we observed the provenance management 

problem through a new perspective: CM. Moreover, we 

presented a discussion about implicit data flows and defined 

the ImP concept. Going beyond, we presented a novel approach 

to gather ImP using CM. 

Our approach opens some new opportunities in terms of 

provenance analysis, such as identifying implicit data flows, 

identifying side effects on data evolution caused by implicit 

data flows, and identifying activities implicit dependencies. 

Furthermore, as provenance information is gathered relating 

each change with its correspondent workflow activity on each 

execution (i.e., trial), it allows intra-trial and inter-trial analysis. 

Intra-trial analysis compares the data produced by different 

activities in a specific trial. Inter-trial analysis compares the 

data produced by a specific activity in different trials.  

As future work we plan to conduct experiments on real 

scientific workflows to better evaluate the use of our gathering 

mechanism in practice. Then, we plan to develop a query and 

analysis mechanism to help scientists to explore, on a useful 

fashion, all the provenance captured by our mechanism. 

Furthermore, our approach gathers information of every 

execution and of each execution step. Therefore, we plan to 

introduce a filtering mechanism to clean up the unnecessary 

provenance information and focus on the ImP that really 

contributed to the experiment results.  
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