

Implicit Provenance Gathering

through Configuration Management

Vitor C. Neves, Vanessa Braganholo, Leonardo Murta

Instituto de Computação

Universidade Federal Fluminense - UFF

Niterói, Rio de Janeiro, Brazil

{vcneves, vanessa, leomurta}@ic.uff.br

Abstract—Scientific experiments based on computer

simulations usually consume and produce huge amounts of data.

Data provenance is used to help scientists answer queries related

to how experiment data were generated or changed. However,

during the experiment execution, data not explicitly referenced

by the experiment specification may lead to an implicit data flow

missed by the existing provenance gathering infrastructures. This

paper introduces a novel approach to gather and store implicit

data flow provenance through configuration management. Our

approach opens some new opportunities in terms of provenance

analysis, such as identifying implicit data flows, identifying data

transformations along an experiment trial, comparing data

evolution in different trials of the same experiment, and

identifying side effects on data evolution caused by implicit data

flows.

Index Terms—implicit data flows, provenance, scientific

workflow, scientific experiment, configuration management.

I. INTRODUCTION

Scientific workflows have been extensively used to

represent experiments that are based on complex computer

simulations. These scientific workflows consume and produce

huge amounts of data. In this context, data provenance [1]

helps scientists answer queries related to experiment data

transformation (e.g., “How were data generated or changed?”).
Similarly to art artifacts provenance, data provenance is the

historical information about data ownership and

transformations. Such information can be gathered through

three main strategies: (1) inspecting the operating system to

capture all system calls during workflow execution (not direct

related with the workflow notation), (2) inspecting the

workflow during its execution to register produced and

consumed data, or (3) instrumenting each workflow activity to

correlate produced data with the processes responsible for the

data production.

However, during the workflow execution, data not

explicitly referenced by the workflow specification can be

created, changed, or accessed, leading to an implicit data flow

[2]. Provenance of such information can be useful to help

scientists to identify and understand the influence of these

implicit data flows. Unfortunately, most of the existing

provenance gathering approaches are not able to capture this

kind of provenance [1]–[4]. The few exceptions that capture

such kind of provenance do not contextualize it with the

activities in the workflow specification [5], [6].

This paper introduces a novel approach to gather and store

provenance data related to implicit data flow through

Configuration Management (CM). CM is a discipline used for

controlling software evolution [7]. It is capable of identifying

and registering changes on configuration items (i.e., artifacts

under CM), relating these changes with the issue that motivated

them. By seeing experiment data as configuration items, it is

possible to identify some similarities between provenance

management and CM. Indeed, provenance is about identifying

changes on experiment data (configuration items, in the CM

terminology) that were motivated or generated by experiment

activities (issues, in the CM terminology). Looking through this

perspective, CM becomes a promising approach to provenance

management.

Our approach goes in this direction, using the workflow

specification as a source of issues to be tracked, and a

distributed version control system (VCS) as a CM tool for

gathering implicit data flow provenance. This allows tracking

changes on files, for each experiment execution, identifying

which activities were responsible for these changes. This way,

tracked changes include not only explicit data flows, but also

the implicit ones, which are our main motivation.

This paper is structured as follows. Section 2 presents a

discussion about provenance and implicit data flow. Then,

Section 3 defines implicit provenance and presents our vision

of provenance management through CM. Section 4 describes

our approach, introducing a usage example. Section 5 presents

related work. Finally, Section 6 concludes this paper with a

discussion about future work.

II. BACKGROUND AND PROBLEM STATEMENT

There are two forms of provenance in the context of

scientific experiments [1]: prospective and retrospective

provenance. Prospective provenance refers to the workflow

specification. It specifies the activities (i.e., steps or tasks) to be

executed to generate the expected results. On the other hand,

retrospective provenance refers to the workflow execution. It

captures executed activities and information about the

978-1-4673-6261-0/13 c© 2013 IEEE SE-CSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

92

environment used for data transformation. It works as an

experiment execution log.

Provenance gathering mechanisms can be classified in three

different classes [1]: workflow-based, activity-based, or

operation system-based (OS). Workflow-based mechanisms are

the built-in infrastructure for provenance gathering in Scientific

Workflow Management Systems (SWfMS). In this case, the

SWfMS becomes responsible for gathering provenance

information. By knowing the workflow specification and

controlling its execution, these approaches are capable of

capturing both prospective and retrospective provenance.

However, they are SWfMS dependent, making it difficult to

integrate provenance collected from different workflows that

compose the same experiment. Moreover, these approaches can

only capture provenance of data that were explicitly specified

in the workflow, thus missing implicit data flows.

Activity-based mechanisms adapt workflow activities,

making them able to gather their own provenance. These

approaches are capable of gathering both prospective and

retrospective provenance and can be SWfMS independent. The

cons are the activity instrumentation difficulties and overhead.

Some activities are not easily adapted and are wrapped as black

boxes. In such situation, the content of an activity and its input

and output data may not be explicitly specified, also leading to

implicit data flows misses during provenance gathering.

Finally, OS-based mechanisms rely only on the OS

environment’s ability to capture data and dependencies among

processes and data. These approaches are SWfMS independent,

do not require any workflow adaptation, and are able to capture

provenance even when implicit data flows are in place.

However, they only capture retrospective provenance.

Gathering provenance trough OS leads to fine-grained

information about all system calls and files touched during the

workflow execution. The large amount of retrospective data

can make these approaches prohibitive when scientists want to

understand the experiment trial in terms of the activities

specified in the workflow (i.e., prospective provenance).

Despite the best efforts of scientists to specify all the

experiment details into the workflow, there are some situations

where workflow activities specification are not complete in

terms of consumed and produced data. In such situations, some

activities’ inputs and outputs that are not declared in the

specification manifest during the workflow execution. Fig. 1

illustrates an example of such situation.

According to Fig. 1, the workflow activity UnzipFile

transmits data to activity ApplyFilter through a shared file

(Img.bmp). The workflow specification, however, does not

register this information. Activities ApplyFilter and

CutInterestingArea also exchange information through the

same file. Again, the workflow specification does not register

this information. Instead, it only specifies that activity

ApplyFilter sends a pair of values to activity CutInteresingArea

({“circle”,2}). In this case, other problem arises: the
consecutive changes over the same file overwrite data

generated by the previously executed activities. Finally,

activities CutInteresingArea and IdentifyPhenomenon illustrate

the ideal scenario for provenance management, since the file

they use is explicitly defined in the workflow specification

(“c:\wksp\ImgCut.bmp”). Even in this last case, some problems

may still arise. Again, if the file name does not change for each

workflow execution, all the data generated in previous

executions will be lost or altered.

Fig. 1. Implicit provenance example: different domains data flows [2].

Furthermore, Fig. 1 illustrates that two data flows occur in

parallel when the workflow specification does not explicitly

declare all related data. The first one occurs in the

SWfMS/workflow domain, presenting data explicitly declared

by the workflow that the SWfMS can collect. The other data

flow occurs in the operation system (OS) domain. It is an

implicit data flow, since it is not declared in the workflow

specification, but it still influences the results of the

experiment.

III. IMPLICIT PROVENANCE MANAGEMENT THROUGH CM

Implicit data flows can influence experiment results. Since

they occur implicitly, their effects may remain hidden from

scientists, leading to misleading analyses. Implicit data flow

provenance, or simply implicit provenance (ImP), can be useful

to help scientists identify or understand possible hidden

influence of implicit data flows. In addition, it serves as an

evidence of implicit dependencies amongst workflow activities.

Identify such dependencies can provide hints on how to

distribute an experiment in different sites or even on how

remodel it to eliminate this dependence.

The perception of implicit data flows relies on the

knowledge of the explicit data flow. In fact, ImP can be defined

as the retrospective implicit data flow provenance related to its

prospective provenance. Thus, an ImP gathering mechanism

must rely on both workflow and OS domains.

According to Koop et al. [4], a tighter integration between

scientific workflows and file management (OS domain) is

necessary to enable the systematic maintenance of data

provenance. Provenance maintenance entails avoiding

provenance loss in multiple consecutive trials that overwrite

files. An example of such multiple consecutive trials is

parameter sweeping, where the same workflow is executed

repeatedly with minor changes in its parameters. At the end, the

best execution is chosen, and provenance helps to explain the

obtained results. This reinforces the necessity of preserving

data generated during the workflow execution.

In the CM field, VCS are responsible for managing the

different versions of configuration items. Koop et al. [4] state

that VCS capture the changes, but not why these changes

occurred. Indeed, CM uses another system responsible for

93

storing such information: issue-tracking systems (ITS).

Usually, each issue is associated with the configuration item

versions produced during the issue fix. This integrated CM

infrastructure can lead to a complete perception of when, how,

where, what, why, and by who a configuration item version

was created [8]. In the context of workflow provenance data,

the workflow specification defines the issues that motivate

changing artifacts. Relating provenance data with the workflow

activity that generated it is equivalent to relating a VCS check-

in with its respective issue in the ITS.

There are four main steps for provenance management

through CM: identify the issues to be tracked (prospective

provenance register), generate an experiment execution

identifier (i.e., trial id), prepare the workspace for the

execution, and gather the retrospective provenance, relating it

to correspondent prospective provenance. First, prospective

provenance must be gathered. Once identified, workflow

activities can be treated as issues by retrospective provenance.

Then, an experiment identifier must be generated to be possible

to identify the tuple {trial id, activity id} that produced the

retrospective data during execution. After that, the workspace

must be prepared to allow ImP gathering. This preparation

involves creating a new workspace or cloning an existing one

from a central repository, and generating a branch for the

execution. Finally, at the end of each activity a check-in must

be triggered to register the new version of every changed

artifact, relating it to the tuple {trial id, activity id}.

IV. THE PROVMONITOR APPROACH

This vision of provenance management through CM

motivated us to conceive a novel approach called ProvMonitor.

This provenance gathering mechanism uses Git [9] VCS to

capture and store retrospective provenance, including ImP. The

ProvMonitor implementation is integrated with ProvManager

[3], an activity-based provenance gathering mechanism that

works through automatic workflow instrumentation. This way,

each activity becomes responsible for gathering its own

provenance.

A. ProvManager

During the workflow instrumentation, the ProvManager

approach collects prospective provenance and automatically

wraps the workflow activities into composite activities. These

composite activities consist on the original activity and some

provenance gathering activities (PGA). The PGAs are

responsible to gather retrospective provenance during the

workflow execution.

It works as follows: the scientist uploads the workflow

specification to the ProvManager. The prospective provenance

is gathered while workflow activities are automatically

wrapped with PGAs. Then, scientists download the

instrumented workflow specification, which is used to execute

the experiment. During the workflow execution, the wrapped

activities gather the retrospective provenance through the PGA

and send it via Web Services to the ProvManager central

provenance repository. As discussed, ProvManager alone is not

capable of gathering ImP. Actually, even the content of files

referenced in the workflow specification is missed. Our

approach introduces ImP aware PGAs in ProvManager.

B. ProvMonitor

During prospective provenance gathering, performed by

ProvManager, ProvMonitor instruments the workflow with CM

commands embedded in the PGAs. This allows ProvMonitor to

work during the workflow execution, gathering the

retrospective provenance and associating it with the previously

collected prospective provenance.

Fig. 2 illustrates how ProvMonitor gathers retrospective

provenance. At the beginning of the workflow execution,

ProvMonitor generates a trial id and prepares the workspace by

cloning the needed input files from a central repository and by

generating a branch for the current workflow execution. Then,

at the end of each activity, ProvMonitor identifies the accessed

files and triggers a check-in, relating the accessed and changed

files with the activity that triggered the PGA. At the end of

execution, the branch is pushed back to the central repository,

making it available for further analysis. As ProvMonitor works

managing the workspace, every change in the configuration

items are caught by the check-ins, even if it is not explicitly

defined in the workflow specification.

Fig. 2. ProvMonitor gathering process

Fig. 3 presents a usage example of ProvMonitor approach

based on the workflow depicted in Fig. 1. As previously

discussed, this workflow has implicit data flows that could lead

the scientist to a misleading analysis. However, at the end of

each activity execution, ProvMonitor catches all changes inside

the workspace and identifies each file accessed during the

activity execution. For instance, it is possible to observe that

the UnzipFile activity created Img.bmp and, subsequently,

ApplyFilter changed the same file. This opens opportunity to

use specialized diff algorithms [10]–[13] and precisely identify

the differences among versions. This kind of analysis is useful

to identify the effects of a specific activity over the data.

Fig. 3. Activities executions changes through trials

94

Additionally, the ImP can also be observed across trials.

For instance, the before mentioned specialized diff algorithms

can be used to compare v1trial 1 and v1trial n of ImaCut.bmp file,

both produced by CutInterestingArea activity, but in different

experiment trials and, consequently, stored in different

branches. This kind of analysis is useful to comprehend the

effects of parameter sweeping on intermediate data.

V. RELATED WORK

Until now, ImP has received low attention in the literature.

Actually, ImP is missed by existing provenance approaches,

except the OS-based gathering approaches [5], [6]. However,

they do not relate prospective and retrospective provenance.

Furthermore, the fine granularity of their gathering mechanism

leads to a very large amount of provenance data. Our approach

tries to minimize the amount of data by working into a

delimited workspace and being triggered by workflow

activities. Doing so, it works at the OS domain, but surrounded

by the workflow activities (Workflow domain).

The ProvManager [3] approach, as previously discussed,

works by adapting workflow activities. It minimizes the

overhead of activities instrumentation via an automatic

adaptation process. However, it cannot capture ImP and misses

even referenced file content. ProvMonitor is an extension of the

ProvManager gathering mechanism that fixes such limitations.

The Strong link approach [4] presents a framework that

uses VCS to create strong links between the experiment and its

provenance data. It is able to capture referenced file content,

but misses ImP when workflow specification does not

explicitly reference the files. Strong Links adopts a cache

mechanism based on Git to optimize workflow executions.

ProvMonitor also uses Git for storing file content separated

from the workspace structure, optimizing persistence and

leading to file moves detection. The main difference is that we

capture retrospective provenance even when it is not specified

in the prospective provenance. Furthermore, we do not provide

a cache system. Cache systems are interesting to optimize

executions in deterministic environments. However, it is risky

to suppose determinism in experiments with implicit data

flows, since different executions can lead to different results

due to implicit data flow side effects.

VI. CONCLUSION AND FUTURE WORK

In this paper, we observed the provenance management

problem through a new perspective: CM. Moreover, we

presented a discussion about implicit data flows and defined

the ImP concept. Going beyond, we presented a novel approach

to gather ImP using CM.

Our approach opens some new opportunities in terms of

provenance analysis, such as identifying implicit data flows,

identifying side effects on data evolution caused by implicit

data flows, and identifying activities implicit dependencies.

Furthermore, as provenance information is gathered relating

each change with its correspondent workflow activity on each

execution (i.e., trial), it allows intra-trial and inter-trial analysis.

Intra-trial analysis compares the data produced by different

activities in a specific trial. Inter-trial analysis compares the

data produced by a specific activity in different trials.

As future work we plan to conduct experiments on real

scientific workflows to better evaluate the use of our gathering

mechanism in practice. Then, we plan to develop a query and

analysis mechanism to help scientists to explore, on a useful

fashion, all the provenance captured by our mechanism.

Furthermore, our approach gathers information of every

execution and of each execution step. Therefore, we plan to

introduce a filtering mechanism to clean up the unnecessary

provenance information and focus on the ImP that really

contributed to the experiment results.

ACKNOWLEDGEMENT

The authors would like to thank CNPq (305276/2010-7 and

305283/2011-1) and FAPERJ (E-26/101.512/2010 and E-

26/103.253/2011) for the financial support.

REFERENCES

[1] J. Freire, D. Koop, E. Santos, and C. Silva, “Provenance for
Computational Tasks: A Survey,” Computing in Science &
Engineering, vol. 10, no. 3, pp. 11–21, May 2008.

[2] A. Marinho, C. Werner, M. L. Q. Mattoso, V. Braganholo, and L. G. P.

Murta, “Challenges in managing implicit and abstract provenance data:
experiences with ProvManager,” in USENIX Workshop on the Theory

and Practice of Provenance (TaPP), Heraklion, Creta, Grécia, 2011.

[3] A. Marinho, L. Murta, C. Werner, V. Braganholo, S. M. S. Cruz, E.
Ogasawara, and M. Mattoso, “ProvManager: a provenance management
system for scientific workflows,” Concurrency and Computation:

Practice and Experience, vol. 24, no. 13, pp. 1513–1530, Oct. 2011.
[4] D. Koop, E. Santos, B. Bauer, M. Troyer, J. Freire, and C. T. Silva,

“Bridging workflow and data provenance using strong links,” in
International Conference on Scientific and Statistical Database
Management (SSDBM), Berlin, Heidelberg, 2010, pp. 397–415.

[5] J. Frew, D. Metzger, and P. Slaughter, “Automatic capture and
reconstruction of computational provenance,” Concurrency and

Computation: Practice and Experience, vol. 20, no. 5, pp. 485–496,

2008.
[6] K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,

“Provenance-aware storage systems,” in Annual Conference on

USENIX, Boston, MA, 2006, pp. 4–4.
[7] S. Dart, “Concepts in Configuration Management Systems,” in

International Workshop on Software Configuration Management

(SCM), Trondheim, Norway, 1991, pp. 1–18.
[8] C. R. Dantas, L. G. P. Murta, and C. M. L. Werner, “Mining Change

Traces from Versioned UML Repositories,” in Brazilian Symposium on

Software Engineering (SBES), João Pessoa, Brazil, 2007, pp. 236–252.
[9] S. Chacon, Pro Git, 1st ed. Berkeley, CA, USA: Apress, 2009.

[10] J. W. Hunt and M. D. McIlroy, “An Algorithm for Differential File
Comparison,” Bell Laboratories, Murrray Hill, New Jersey, Computing
Science Technical Report, 1976.

[11] G. Cobena, S. Abiteboul, and A. Marian, “Detecting Changes in XML
Documents,” in International Conference on Data Engineering (ICDE),

San Jose, CA, USA, 2002, pp. 41–52.

[12] D. Ohst, M. Welle, and U. Kelter, “Differences between versions of

UML diagrams,” in European Software Engineering Conference
(ESEC), Helsinki, Finland, 2003, pp. 227–236.

[13] J. R. Silva Junior, T. Pacheco, E. Clua, and L. Murta, “A GPU-based

Architecture for Parallel Image-aware Version Control,” in European
Conference on Software Maintenance and Reengineering (CSMR),

Szeged, 2012, pp. 191 –200.

95

