
Towards Odyssey-VCS 2: Improvements
over a UML-based Version Control System

Leonardo Murta Chessman Corrêa João Gustavo Prudêncio Cláudia Werner
Federal University of Rio de Janeiro - COPPE - System Eng. and Computer Science

P.O. Box 68511 - Rio de Janeiro, RJ 21945-970 Brazil

{murta, chessman, gustavo, werner}@cos.ufrj.br

ABSTRACT

Models are becoming first class artifacts in Software Engineering.

Due to that, an infrastructure is needed to support model evolution

in the same way we have for source-code. One of the key ele-

ments of such infrastructure is a version control system properly

designed for models. In previous work, we presented Odyssey-

VCS, a version control system tailored to fine-grained UML

model elements. In this paper, we discuss the main improvements

that we are incorporating on the second release of this system,

which are: support for UML 2, reflective processing, explicit

branching and auto-branching, generic merge algorithm, support

for pessimistic concurrency policy, and support for hooks.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques �

computer-aided software engineering (CASE), object-oriented

design methods.

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement � version control.

D.2.9 [Software Engineering]: Management � software configura-

tion management.

General Terms

Management, Design.

Keywords

Unified Modeling Language (UML), Version Control.

1. INTRODUCTION
In the last years, model-driven development has emerged as an

important technique for software development. Model-driven

approaches focus on the definition of high level models and apply

subsequent transformations to obtain implementation artifacts [1].

One of the most known organizations behind model-driven devel-

opment is Object Management Group (OMG) [28], which advo-

cate the use of Unified Modeling Language (UML) [29, 30]

among other standards as part of a software design approach

named Model-driven Architecture (MDA) [20]. Due to this sce-

nario, UML is becoming more than a software documentation

notation. UML diagrams can now be transformed into source-

code or even automatically executed [19].

However, this new scenario brings together new challenges: in the

past an enormous infrastructure has been built to develop and

maintain source-code, which does not properly work for models.

One of the key elements of this infrastructure is the version con-

trol system, which is responsible for keeping a software system

consisting of many versions and configurations well organized

[34].

The existing version control systems, conceived for dealing with

source-code, were intentionally designed to be generic [11],

avoiding language-specific support. For example, most current

version control systems are based on file system structures, while

modeling languages are based on higher level structures. The

mapping of these complex structures used by modeling languages

to file structures is dangerous due to concept mismatch. Neverthe-

less, the Software Configuration Management (SCM) community

has already detected that many unaddressed research issues rely

on breaking the assumption of generic and language independent

SCM [11].

In previous work, we presented Odyssey-VCS [21, 24], a version

control system tailored to fine-grained UML model elements.

During the design of Odyssey-VCS, we aimed to overcome some

of the challenges described in the SCM literature [10], such as: (1)

data model that deals with complex objects; (2) homogeneous

versioning for different types of objects; (3) distributed and het-

erogeneous workspaces; and (4) concurrent engineering with high

level models.

In this paper, we present some ongoing improvements over Odys-

sey-VCS. These improvements encompass: (1) support for UML

2, (2) reflective processing, (3) explicit branching and auto-

branching, (4) generic merge algorithm, (5) support for pessimis-

tic concurrency policy, and (6) support for hooks.

The rest of this paper is organized as follows. Section 2 briefly

describes the first release of Odyssey-VCS. Section 3 details the

improvements being implemented on Odyssey-VCS 2. Section 4

present some related work, and we conclude the paper in Section

5 with an outlook at our future work.

2. ODYSSEY-VCS
The main goal of the first release of Odyssey-VCS was to provide

a version control system that aids architects in the concurrent

modeling of software systems using heterogeneous UML-based

CASE tools. To achieve this goal, Odyssey-VCS adheres to well

adopted specifications, such as Meta Object Facility (MOF) [25],

UML, XML Metadata Interchange (XMI) format [27], and Java

Metadata Interface (JMI) [7].

Odyssey-VCS was conceived to work in a similar way of popular

file-based version control systems, such as Subversion [5]. Models

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CVSM�08, May 17, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-045-6/08/05...$5.00.

25

are checked-out from a central server, changed in parallel by differ-

ent users in private workspaces, and finally checked-in back to the

repository. The main concerns of Odyssey-VCS reside on server-

side and include concurrency control and model versioning. Due to

that, the visual presentation of model differences and client-side

model editing are lead to external tools, such as CASE tools. It is

worth to notice that Odyssey-VCS is not tailored to a specific UML

diagram. It works over UML models and is able to version any kind

of information contained in these models.

The communication among UML-based CASE tools and Odyssey-

VCS takes place via Web Services [3]. The CASE tools externalize

UML models as XMI files and stream these files to Odyssey-VCS

through Web Services calls. At server-side, Odyssey-VCS loads

these XMI files into a MOF Repository named MDR [18] and ma-

nipulates the UML models via JMI API. Each XMI file, which

represents a specific version of a UML model, becomes an extent in

the MDR repository.

Odyssey-VCS has its own versioning model. This model, which is

implemented as a MOF meta-model, is responsible for storing ver-

sioning information and linking this version information to the data

model. In our case, the data model is an instance of the UML meta-

model. Figure 2 shows this scenario, highlighting that each UML

model element version will be linked by the Odyssey-VCS model

inside MDR. This allows us to perform further querying and re-

trieval.

Finally, Odyssey-VCS maintains a per-project behavior descriptor

that informs how each UML model element type should be handled.

This behavior descriptor determines whether evolution information

is needed or not for a specific UML model element. This evolution

information comprises a unique version identification and auxiliary

contextual information, such as who changed the element, when it

was changed, and why it has been changed. Moreover, this behavior

descriptor also indicates which elements are considered atomic for

conflict detection purpose. Odyssey-VCS raises a conflict flag when

two or more developers concurrently change an element that is con-

sidered atomic.

3. ODYSSEY-VCS 2
The second release of Odyssey-VCS encompasses multiple im-

provements over the first release. These improvements, which are

discussed in the next sections, demanded some changes in the Odys-

sey-VCS versioning model. Figure 1 shows a scrap of the Odyssey-

VCS versioning model, composed by five mains classes: configura-

tion item, version, transaction, user and

model element.

Each configuration item is composed

by versions. Each version has relation-

ships to the next and previous versions,

which can be null for the first and last

versions of a configuration item, re-

spectively. A specific attribute differen-

tiates versions that were deleted by the

user. In addition, it also has relation-

ships to branched and merged versions,

which allow non-sequential develop-

ment.

Versions are queried or created by

transactions. We currently support

both read-only and read-write transactions, such as history, check-

out, and check-in. It is important to notice that the explicit link

among read-only transactions and versions allows us to increase

awareness support of Odyssey-VCS: it is possible to know which

model elements where checked-out or had its history analyzed by

a specific user.

Finally, versions have relationships to model elements that cross

the Odyssey-VCS versioning model border. This relationship

connects the Odyssey-VCS versioning model with the UML

meta-model, as shown in Figure 2. The EModelElement class

belongs to the M3 level and is extended by meta-models at M2

level. Due to that, UML model elements, which inherit from this

class, are subject for versioning according to Odyssey-VCS ap-

proach.

3.1 Support for UML 2
The first release of Odyssey-VCS can be seen as a proof-of-

concept prototype, which allowed us to experiment and better

understand the real challenges of model versioning. This release

had some performance issues, mainly due to overheads imposed

by MDR [21]. On top of that, the MDR project is compliant to

MOF 1.4, preventing us to support UML 2. Due to that, we re-

placed MDR by a new infrastructure for meta-modeling in the

second release of Odyssey-VCS.

This new infrastructure, named Eclipse Modeling Framework

(EMF) [8], has a specific module that provides an implementation

for the UML 2 meta-model [9]. Additionally, it allows us to inter-

act with the meta-model via an API similar to JMI. It is also pos-

Figure 1. Scrap of the Odyssey-VCS versioning model

MOF meta-model

UML

meta-model

versioning

model

n

MDR

UML

model

versions

graph

M3

M2

M1

Figure 2. Relationship between Odyssey-VCS and UML

26

sible to create our own meta-model and to export models in terms

of XMI files.

EMF and MDR share many similarities. Both have the concept of

extent for loading and saving XMI files and provide API to ma-

nipulate the models. Moreover, both allow transient and non-

transient repositories. In the case of MDR, non-transient reposito-

ries use a B-Tree implementation. On the other hand, EMF uses

XMI files or a relational database mapping for non-transient re-

positories.

Most version control systems stores some client-side information

to help workspace control. For instance, CVS [12] and Subversion

[5] use directories CVS and .svn, respectively. In our case, we use

UML Profiles for performing this task. Our profile has a stereo-

type named OdysseyVCSElement that stores the base element ID

and the element version. The base element ID is the ID of the

checked-out model element. With this kind of information, Odys-

sey-VCS is able to correctly identify the checked-out element

during check-in and merge. In addition, keeping the base element

ID in the UML model elements allows us to correctly track re-

names, moves, and copies of UML model elements.

3.2 Reflective Processing
The first version of Odyssey-VCS used handlers to deal with spe-

cific types of model elements. A handler has methods for provid-

ing new instances and for processing instances of a specific type.

For example, the ClassHandler is a handler for the Class type. It

knows how to create a new Class instance and how to process

classes, which consists on processing primitive properties of the

Class type and recursively processing attributes and operations.

Due to this design decision, we had to implement a handler class

for each model element type in the UML meta-model. This led us

to an incomplete support of the UML meta-model and difficulties

to upgrade the meta-model. For instance, we needed to check all

model elements types during meta-model upgrade, and create new

handle classes to process new types.

However, these handle classes hold a high degree of similarity.

All of them create instances of a specific type, process the primi-

tive attributes of the type (such as name in the case of ClassHan-

dler) and recursively run for the relationships of the type (such as

attributes and operations, among others, in the case of ClassHan-

dler).

Fortunately, the M3 layer of EMF, named Ecore, provides a re-

flective API. This API allows the type identification of a specific

model element (modelElement.eClass()), new instances creation

for specific types (UMLFactory.eINSTANCE.create(type)), at-

tributes identification for a specific type

(type.getEAllAttributes()), and relationships identification for a

specific type (type.getEAllReferences()). Table 1 and Table 2

summarize some methods of the Ecore reflective API for types

and instances, respectively.

The second release of Odyssey-VCS uses this API for its branch-

ing and merge algorithms, allowing us to get rid of the previous

handler structure. This improvement has two major benefits: (1) it

makes easier to upgrade the UML meta-model, because our ver-

sioning model and algorithms have fewer explicit dependencies to

a specific release of the UML meta-model, and (2) it opens some

possibilities for generic meta-model versioning, if our versioning

model and algorithms become generic enough to work over any

Ecore-based meta-models.

Table 1. Summary of the reflective API for types

Method Description

getEAllSuperTypes() Provides all local and inherited super

types of a specific type

getEAllAttributes() Provides all local and inherited attrib-

utes of a specific type

getEAllOperations() Provides all local and inherited opera-

tions of a specific type

getEAllReferences() Provides all local and inherited refer-

ences of a specific type

getEAllContainments() Provides all local and inherited con-

tainment reference of a specific type

Table 2. Summary of the reflective API for instances.

Method Description

eClass() Provides the type of a specific in-

stance

eGet(EStructuralFeature) Provides the value of an attribute or

reference of a specific instance

eSet(EStructuralFeature,

Object)

Defines the value of an attribute or

reference of a specific instance

3.3 Branching
The first release of Odyssey-VCS has no explicit support for

branching. However, it was able to track copies of model ele-

ments due to the base element ID discussed in Section 3.1. When

a checked-out model element is copied to another part of the

model, the identification of the original model element, which is

stored in a stereotype attached to the element, is also copied to-

gether with the copied model element. This allows Odyssey-VCS

to correctly keep the history of the copied elements during check-

in.

Currently, we are working on a solid support for branching for the

second release of Odyssey-VCS. We identified two type of

branch: implicit and explicit branching. The implicit branching

support consists on the previously described situation. There is no

explicit command for creating a branch and the branch does not

occur by forking the whole data model, but only by coping frag-

ments of the data model to other locations inside the data model.

Subversion is an example of an existing version control system

that provides this kind of support for branching. The explicit

branching support consists on branching the whole data model

due to an explicit call to a branch command. CVS is an example

of an existing version control system that provides this kind of

support for branching.

Both branching supports are useful for specific situations, and

they can be combined to provide a more powerful solution to the

users. For example, after finishing analysis, an architect may copy

the analysis model into another package, and start the design. In

this scenario, implicit branching was used because both analysis

and design models belong to the same system and both branches

will live forever. However, if an architect wants to test a new

module on the system, an explicit branch should be used. It is

worth to notice that both �system without the new module� and

�system with the new module� are variants of the same system.

27

One of them will be kept, and the other will be discarded in the

future.

The explicit support for branching in Odyssey-VCS also allows us

to implement the concept of auto-branching. Auto-branching con-

sists on automatically creating a branch for every check-

out/change/check-in cycle. Most current version control systems,

with few exceptions [2], looses information during parallel devel-

opment (two or more people changing the same artifact at the

same time). This occurs because users are forced to merge before

they check-in. Due to that, there is no way to identify the original

change intention of the user, but only the change already merged

with changes performed by other users. With auto-branching, we

can store both the intention and the merged changes.

This auto-branching feature can be easily introduced in Odyssey-

VCS by changing the current check-in algorithm. The new check-

in algorithm will consist on performing a branch, applying the

original change to the branch, and attempting to merge these

changes back to the main line of development. If the merge fails,

the user will be forced to manually merge his changes with

changes made by other users. The new check-in with merged

changes will go directly to the main line of development, finish-

ing the auto-branching lifecycle, as shown in Figure 3 (auto-

branching with dashed lines).

Figure 3. Auto-branching support

3.4 Merge
The improvements described in Sections 3.2 and 3.3 allowed

some additional improvements to the merge algorithm. The new

merge algorithm replaced the old type-specific merge algorithm

by applying a generic strategy to all model element types via the

reflective API. It also takes advantage of auto-branching for dif-

ference detection.

The new merge algorithm follows a generic 3-way merge ap-

proach [6], receiving the base (B), source (S), and target (T) ver-

sions of a model element as arguments and returning the merged

version (M). The base version is the greater common version be-

tween both paths (B S and B T). The source and target ver-

sion are the versions being merged. It is worth to notice that the

ID support discussed in Section 3.1 is used to perform all neces-

sary matches among model elements.

The algorithm can be decomposed into three main parts: (1) exis-

tence analysis, (2) attributes processing, (3) relationships process-

ing. The existence analysis verifies the arguments and decides

weather the algorithm should continue, finish or raise a conflict.

Table 3 shows the possible results for this analysis. It is important

to notice that the M = null statement represents the element dele-

tion in the merged version without further processing.

Table 3. Existence analysis

∃ B ∃ S ∃ T Result

True True True Merge algorithm continues (see attributes

processing in Table 4)

True True False If S == B then M = null

Else raises conflict: �source changed and

target deleted�

True False True If T == B then M = null

Else raises conflict: �target changed and

source deleted�

True False False M = null

False True True Impossible (different elements cannot have

the same ID)

False True False M = S

False False True M = T

False False False M = null

After performing the existence analysis, the merge algorithm may

continue and run the attributes processing. In this phase, the algo-

rithm aims to merge the attributes of each model element. Table 4

shows the possible results for this analysis for each attribute.

Table 4. Attributes processing

S == B T == B S == T Result

True True True M = T (or M = S or M = B)

True True False Impossible (transitive relation)

True False True Impossible (transitive relation)

True False False M = T

False True True Impossible (transitive relation)

False True False M = S

False False True M = T (or M = S)

False False False Raises conflict: �same attribute

changed in both source and target�

Finally, the relationships processing considers both containment

and non-containment relationships. In the case of containment

relationships, changes in the other end of the relationship repre-

sent changes in the model element being processed. For example,

a class has containment relationships to its operations. If an opera-

tion changes, the class is indirectly changed. On the other hand,

only additions and removals of non-containment relationships

change the model element being processed. For example, suppose

that class A has an association with class B (non-containment

relationship). Changes in class B are not propagated to class A.

However, the creation of a new association between classes A and

C indirectly changes class A.

Besides this change propagation issue, the merge algorithm is

recursively called for both containment and non containment rela-

tionships. The results of these recursive calls are assigned to the

relationship field of the model element being processed.

3.5 Concurrency Policies
The first release of Odyssey-VCS only allowed the use of opti-

mistic concurrency policy. However, in some situations, such as

Base

version

User

intention

Other

changes

Merged

version

Repository

Changed

version

Check-out Check-in

branch merge

Workspace

28

refactorings, it is desired to prohibit other architects to change a

specific part of the model for a period of time. In this case, a pes-

simistic concurrency policy is handy.

Fortunately, such pessimistic concurrency policy can be imple-

mented in Odyssey-VCS without changing its versioning model.

A lock command, if applied on a specific model element, results

on the creation of a new transaction instance (see Figure 1) that

associates the locked configuration item with the user who per-

formed the lock. Moreover, the lock transaction holds the reason

why a lock was needed.

During the lock period, no check-in command is accepted, except

the check-in command performed by the lock owner. In this case,

the lock is automatically removed. Another way to remove the

lock is the explicit use of the unlock command.

3.6 Hooks
Another weak aspect in the first release of Odyssey-VCS is re-

garding extension mechanisms. This release does not provide

mechanisms to trigger external tools in response to specific

events. This kind of support is usually needed for performing

external tasks prior or as a consequence of an event.

A common strategy for implementing this extension mechanism

in version control systems is using the Observer pattern [13] asso-

ciated to specific events. These events are usually related to the

moments before and after the execution of the version control

commands. For instance, Subversion provides support for pre and

post events for commit, property change, lock, and unlock.

We intent to introduce a generic hook support for the second re-

lease of Odyssey-VCS. This support will allow us to implement

any pre and post commands hooks in the future. In addition, we

are currently working on a specific support for pre-check-in and

post-check-in hooks. The hooks for the other commands will be

introduced in the next releases.

4. RELATED WORK
Most commercial and open-source version control systems are

based on file system data model [5, 12, 32, 35]. Besides being

generic and mature, these version control systems have several

limitations to manipulate artifacts with complex internal data

model, such as UML. These limitations include inability to per-

form fine-grained versioning of model elements or to consistently

merge and detect conflicts among model elements [21]. We do not

see these approaches as direct competitors of our approach. Our

approach can be used to version UML model elements while these

approaches can be used to version source-code artifacts in the

same software development project.

There are also other approaches that employ other data models,

such as entity-relationship or even object-oriented. However,

these approaches work at source-code level and are focused on a

specific programming language. For instance, Goldstein et al.

[15], Habermann et al. [16], and Render et al. [31] support ver-

sioning of Smalltalk, C and Pascal source-code, respectively. Our

approach can also be seen as complementary to these approaches

since we are focused on UML model elements and these ap-

proaches are focused on source-code.

Some few approaches use non file system data model to version

analysis and design artifacts. For instance, Ohst et al. [23] propose

an approach for versioning analysis and design artifacts via syntax

trees stored in XML files. Working at fine grained UML artifacts

they can correctly manage structural changes on these artifacts.

However, the usage of XML does not mean adherence to model-

ing standards. Their XML format does not follow XMI specifica-

tion for UML, leading to incompatibilities with existing UML-

based CASE tools. Moreover, they provide no support for work-

space management and merging. On the other hand, Nguyen et al.

[22] use a hyper-versioning system to apply version control over

complex artifacts, including UML analysis and design artifacts.

This work has a strong focus on versioning relationships among

the elements. However, it is also based on a proprietary UML data

model, reducing compatibility with existing CASE tools.

Some CASE tools, such as Enterprise Architect [33], Borland

Together [4], Rational Software Architect [17], and Poseidon

[14], provide integration with existing file-based version control

system. Usually, they break the model apart, into small files, and

store these files in a file-based version control system. This strat-

egy allows the use of pessimistic concurrency control by locking

these files. Moreover, they usually apply external tools to merge

model elements, in the case of optimistic concurrency control.

Besides providing some support for model versioning, this strat-

egy heavily relies on client-side tools, making it difficult the re-

placement or even the concomitant usage of different CASE tools.

In addition, the repository is usually spoiled with many unrecog-

nizable model and control files, which cannot be considered tex-

tual files by the version control system. This makes almost useless

the standard toolset shipped together with the version control

systems.

Finally, OMG has defined a specification for MOF versioning

[26]. Although not compliant to this specification, it is possible to

notice that Odyssey-VCS share the specification philosophy.

Similar to the specification, Odyssey-VCS has its own versioning

model. Moreover, it stores the versioned elements into separate

per-version extents with associated history of changes. It seems

feasible to adapt the Odyssey-VCS versioning model to adhere to

this specification in the future.

5. CONCLUSION
We presented in this paper the ongoing improvements for the

second release of Odyssey-VCS. The main enhancement is the

adoption of EMF, allowing us to support UML 2.1 and XMI 2.1

specifications. However, we have also presented some other new

features, such as reflective processing, explicit branching and

auto-branching, generic merge algorithm, support for pessimistic

concurrency policy, and support for hooks.

After finishing the implementation phase, we intent to start the

testing phase, together with some performance evaluation. The

results of the performance evaluation can be compared with the

results obtained by the first release of Odyssey-VCS [21]. We are

expecting some performance improvements due to the replace-

ment of MDR to EMF and the use of Ecore reflective API on the

merge algorithm.

As future work, we intend to deeply analyze the MOF versioning

specification and try to adhere to this specification. Moreover,

another future work is to generalize the existing UML versioning

model references (most of these references were removed with

reflective processing) and transform Odyssey-VCS into a generic

29

version control system for MOF-based (or Ecore-based) meta-

models.

6. ACKNOWLEDGMENTS
Our thanks to the members of the Software Reuse Group at

COPPE/UFRJ, especially Hamilton Oliveira, Cristine Dantas, and

Luiz Gustavo Lopes, who contributed to the first release of Odys-

sey-VCS. Moreover, we would like to thank CNPq for the finan-

cial support under grant PDJ 150346/2007-7.

7. REFERENCES
[1] Beydeda, S., Book, M. and Gruhn, V. Model-Driven Software

Development. Springer, 2005.

[2] BitMover, 2008, "BitKeeper". In: http://www.bitkeeper.com,

accessed in January 23, 2008.

[3] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion,

M., Ferris, C. and Orchard, D., 2005, "Web Services Architec-

ture - W3C Working Group Note". In:

http://www.w3.org/TR/ws-arch, accessed in April 16, 2006.

[4] Borland, 2008, "Borland Together". In:

http://www.borland.com/us/products/together/index.html, ac-

cessed in January 16, 2008.

[5] Collins-Sussman, B., Fitzpatrick, B.W. and Pilato, C.M. Ver-

sion Control with Subversion. O'Reilly, 2004.

[6] Conradi, R. and Westfechtel, B. Version Models for Software

Configuration Management. ACM Computing Surveys, 30 (2).

232-282.

[7] Dirckze, R. Java Metadata Interface (JMI) Specification - Ver-

sion 1.0, Unisys Corporation and Sun Microsystems, 2002.

[8] Eclipse Foundation, 2008, "Eclipse Modeling Framework

(EMF)". In: http://www.eclipse.org/emf, accessed in January

23, 2008.

[9] Eclipse Foundation, 2008, "EMF-based UML 2.x Metamodel

Implementation". In: http://www.eclipse.org/uml2, accessed in

January 23, 2008.

[10] Estublier, J., Software Configuration Management: a Roadmap.

in International Conference on Software Engineering (ICSE),

The Future of Software Engineering, (Limerick, Ireland, 2000),

279-289.

[11] Estublier, J., Leblang, D., van der Hoek, A., Conradi, R.,

Clemm, G., Tichy, W. and Wiborg-Weber, D. Impact of Soft-

ware Engineering Research on the Practice of Software Con-

figuration Management. ACM Transactions on Software Engi-

neering and Methodology (TOSEM), 14 (4). 1-48.

[12] Fogel, K. and Bar, M. Open Source Development with CVS.

The Coriolis Group, Scottsdale, Arizona, USA, 2001.

[13] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design

Patterns: Elements of Reusable Object-Oriented Software. Ad-

dison Wesley, 1995.

[14] Gentleware, 2008, "Poseidon for UML". In:

http://www.gentleware.com, accessed in January 23, 2008.

[15] Goldstein, I.P. and Bobrow, D.G. A Layered Approach to

Software Design. in Barstow, D.R., Shrobe, H.E. and Sande-

wall, E. eds. Interactive Programming Environments,

McGraw-Hill, New York, NY, 1984, 387-413.

[16] Habermann, A.N. and Notkin, D. Gandalf: Software Develop-

ment Environments. IEEE Transactions on Software Engineer-

ing (TSE), 12 (12). 1117-1127.

[17] IBM, 2008, "Rational Software Architect". In: http://www-

306.ibm.com/software/awdtools/architect/swarchitect/, ac-

cessed in January 16, 2008.

[18] Matula, M., 2008, "NetBeans Metadata Repository". In:

http://mdr.netbeans.org, accessed in January 23, 2008.

[19] Mellor, S.J. and Balcer, M.J. Executable UML: A Foundation

for Model-Driven Architecture. Addison-Wesley Professional,

2002.

[20] Miller, J. and Mukerji, J. MDA Guide Version 1.0.1, Object

Management Group, 2003.

[21] Murta, L.G.P., Oliveira, H.L.R., Dantas, C.R., Lopes, L.G.B.

and Werner, C.M.L. Odyssey-SCM: An integrated software

configuration management infrastructure for UML models.

Science of Computer Programming, 65 (3). 249-274.

[22] Nguyen, T.N., Munson, E.V. and Boyland, J.T., The molhado

hypertext versioning system. in Conference on Hypertext and

Hypermedia, (Santa Cruz, USA, 2004), 185-194.

[23] Ohst, D. and Kelter, U., A Fine-grained Version and Configura-

tion Model in Analysis and Design. in International Confer-

ence on Software Maintenance (ICSM), (Montreal, Canada,

2002), 521-527.

[24] Oliveira, H.L.R., Murta, L.G.P. and Werner, C.M.L., Odyssey-

VCS: a Flexible Version Control System for UML Model Ele-

ments. in International Workshop on Software Configuration

Management (SCM), (Lisbon, Portugal, 2005), 1-16.

[25] OMG. Meta Object Facility (MOF) Specification, version 1.4,

Object Management Group, 2002.

[26] OMG. Meta Object Facility (MOF) Versioning and Develop-

ment Lifecycle Specification, v2.0, Object Management

Group, 2007.

[27] OMG. MOF 2.0/XMI Mapping, Version 2.1.1, Object Man-

agement Group, 2007.

[28] OMG, 2008, "Object Management Group". In:

http://www.omg.org, accessed in January 23, 2008.

[29] OMG. Unified Modeling Language (UML) Infrastructure

Specification, version 2.0, Object Management Group, 2006.

[30] OMG. Unified Modeling Language (UML) Superstructure

Specification, version 2.0, Object Management Group, 2005.

[31] Render, H. and Campbell, R., An Object-oriented Model of

Software Configuration Management. in International Work-

shop on Software Configuration Management (SCM), (Trond-

heim, Norway, 1991), 127-139.

[32] Roche, T. and Whipple, L.C. Essential SourceSafe. Hentzen-

werke Publishing, 2001.

[33] Sparx Systems, 2008, "Enterprise Architect". In:

http://www.sparxsystems.com/products/ea.html, accessed in

January 23, 2008.

[34] Tichy, W. RCS: a system for version control. Software - Prac-

tice and Experience, 15 (7). 637-654.

[35] White, B.A. Software Configuration Management Strategies

and Rational ClearCase: A Practical Introduction. Addison-

Wesley, 2000.

30

