ArchTrace: A Tool for Keeping in Sync
Architecture and its Implementation

Leonardo G. P. Murta', André van der Hoek’, Claudia M. L. Werner'

'COPPE — Federal University of Rio de Janeiro (UFRJ)
P.O. Box 68511 —21945-970 — Rio de Janeiro — RJ — Brazil

*Department of Informatics — University of California, Irvine (UCT)
444 Computer Science Building — 92697-3440 — Irvine — CA — USA

{murta, werner}@cos.ufrj.br, andre@ics.uci.edu

Abstract. During software evolution, the designed architecture usually loses
sync to its source code. This problem creates a gap between the high-level
specification of systems and their actual implementation. We present a tool,
named ArchTrace, for the creation and maintenance of traceability among
architectures and their implementations. Our tool allows architectural
elements and source code to evolve separately, but provides an extensible
infrastructure that employs nine pluggable policies to update the traceability
links as a response to their evolution.

1. Introduction

Software architectures are intended to represent a system at high abstraction levels,
allowing complexity control and serving as the basis for further development. Moreover,
software architectures are useful for quality attribute assessment, stakeholder
communication and software product lines [3].

The architecture of software systems is typically described via an Architectural
Description Language (ADL), which uses components, interfaces, and connectors as
first-class elements. However, control over the evolution of software architectures is
still a challenge. When architectures evolve, their implementations should evolve in the
same way to avoid inconsistencies. This problem, named architectural erosion, may
threaten the benefits of software architectures due to divergences among the high-level
specification of systems and their actual implementation.

The goal of this paper is to present a tool, named ArchTrace, which manages
traceability links among architectural elements and source-code. Furthermore, our tool
provides a policy-based infrastructure to evolve the traceability links as a response to the
evolution of architectural elements or source-code. This infrastructure is composed of
nine built-in policies and may be extended through the construction of new policies,
allowing complex behavior via the compound execution of policies. For example, the
evolution of architectural elements or source-code triggers the execution of some
pluggable policies. However, the execution of these policies may trigger the execution
of other policies, recursively.

The rest of this paper is organized as follows. Section 2 presents some related
work. Section 3 introduces the high level design of ArchTrace, followed by a usage

example in Section 4. Section 5 details the ArchTrace implementation, and we conclude
the paper in Section 6 with an outlook of our future work.

2. Related Work

Several different approaches already address the problem of maintaining traceability
between an architectural description and its corresponding source code artifacts. These
approaches can be classified into two categories: equality by definition and after the fact
reconstruction. Equality by definition refers to methods in which an architectural
description and its source code artifacts are perfectly traceable because one is embedded
into the other. For instance, ArchJava [1] and XDoclet [11] embed the definition of
architectural elements in the source code. While this kind of solution is effective in
maintaining 100% accuracy, it is not realistic, since it is often the case that the software
architecture is maintained in a structure that resides apart from source code, with
different people using different tools and different notations maintaining the two.

Data mining [13], information retrieval [2], and syntactic analysis [4] techniques
fall into the category of after the fact reconstruction. This category encompasses
techniques which (re)discover traceability links. These techniques tend to be generic in
nature, and do not take into account the special relationship between architecture and
source code, nor do they leverage the structured way in which both tend to co-evolve.

3. High-level Design

ArchTrace falls in between equality by definition and after the fact reconstruction
categories. We classify it as an instant update approach. It allows the creation and
continuous evolution of traceability links among architectural elements and their
implementation. The philosophy behind ArchTrace is that a group of people is
responsible for developing and maintaining architectures, and another group of people
implements this architecture using specific programming languages. Architects have
their own tools to define and evolve architectures, such as the ArchStudio environment
[7]. On the other hand, developers also have their own tools to do their work, such as
the Eclipse IDE [8] and Subversion [5]. Moreover, ArchTrace provides a policy-based
infrastructure that listens to notifications of changes in architectural elements and source
code (actually, any kind of configuration items), as shown in Figure 1. These
notifications trigger any applicable policy to update the traceability links, and these
policies may trigger other policies, recursively. An important aspect of ArchTrace is that
it is pluggable with respect to the set of traceability management policies that it uses.
We have already implemented nine such policies, but other policies can easily be coded
and used. Additional information regarding ArchTrace approach can be found at [9].

Notifications
LT TTs ~ Traceability Links

/ | Architectural Elements L

A
= Policie

\ 'VVY

‘ 1
\ | Configuration Items r
\\\ T \
- »
>

See___-" time
- [4

L\
\
S\
3\

>

Figure 1. Traceability links evolution via policy triggering

4. Usage Example

We applied ArchTrace to evolve the traceability links of the Odyssey environment [12].
First, we manually established an initial set of traceability links. During this step, one of
the ArchTrace built-in policies, the data-mining policy, detected a pattern in the links
creation and warned us, as shown in Figure 2. It is important to notice that this step
could be performed with the support of any approach discussed in Section 2.

[}

ArchTrace Suggestion

Trace from State Modeling {version 0.0.0, mutable) to Icone.java
{version 2) has been created. However, architectural elements
that have traces to Icone.java {version 2) usually have traces also
to the following configuration items.

lambienteModelagem.java {(version 2) (support: 35%, confidence
[FabricaRepresentacoesl exicas.java {version 2) (support: 35%, ¢
TratadorMovaBase.java {(version 2) (support: 35%, confidence: 1
FabricaRepresentacoes.java (version 2) (support: 35%, confiden;__|

AND

- 36 T ~|
[Il [»

If you want to accept some suggestions, select the desired
suggestions (use Ctrl or Shift to select more than one) and then
click the OK button. Otherwise, just click the OK hutton.

Figure 2. Data-mining policy in action

After establishing the initial traceability links between the Odyssey architecture
and its source code, we were able to query these links in a bidirectional fashion: it is
possible to select an architectural element and visualize all source code artifacts that
implement the element, and vice-versa. It is important to notice that usually only one
architectural element “owns” a given source code artifact, but our tool does not impose
this restriction. Figure 3 shows ArchTrace being used to query traceability links.

[=] archTrace =
File Config Help
Architectures ‘| Repuositories
[£] Application Generator (version 0.0.0, mutabls) | = 2| ¢ [&) odyssey SDE [~
[£ Architecture Generation (rersian 0.0.0, mutable) ¢ [d B configuratinn 2 L
2] Business Maodeling tersion 0.0.0, rmutable) L @ [Bl trunk tversion 2) |
£ Class Modeling fersion 0.0.0, mutable) E o~ [B bin fversion 23
[£] Code Generator fversian 0.0.0, mutable) o Bl classes version 2
%1 Companent Modeling fversion 0.0.0, mutahle) ¢ OB componentes tersion 2)
] Context Modeling (version 0.0.0, mutable) : ¢ [B genericos rersion 2)
2] Feature Modeling (version 0.0.0, mutable) E [E) comparador java (version 2}
[&] Inference Machine version 0.0.0, mutakle) [B customButionGroup java (version 2)
[£ Madeling Infrastructure (rersion 0.0.0, mutable) E [E) bHDComponentinterface java (versi
[£ Persistence fversion 0.0.0, mutable) Tk [B DMDTree jawa version 2
[%] Pracess Machine fersion 0.0.0, mutahle) [O DropTargetListjava tversion 2)
[%] Search Engine version 0.0.0, mutahle) [O Fabricajava (rersion 2)
] sequence Modeling fversion 0.0.0, mutable) : [B cenericjava iversion 2)
[&7 state Madeling tersion 0.0.0, rmutable) [m]S]
[] Use Case Modeling trersion 0.0.0, rutable) [B imagecanvas java iversion 2)
o OB Interfaces E [E) Navegador jawa (version 2)
o 1B connectors [=| [B PopupBution jawa fersion 2) =l
[] I L [i I T

Messages posted by policies

FriMar 11 21:27:06 BRT 2005 - Trace from Seguence Modeling {version 0.0.0, mutable) to FabricaSemanticos java (version 2) added dus
FriMar 11 21:27:06 BRT 2005 - Trace from Sequence Modeling (version 0.0.0, mutable) to FabricaligacoesLexicas.java (version 2} adde
FriMar 11 21:27:06 BRT 2005 - Trace from Sequence Modeling (version 0.0.0, mutable) to FabricaNosL exicos.java (version 2) added due

[TuT»]

[« Il] [v]

Figure 3. ArchTrace screenshot

Finally, Archtrace updates traceability links when a check-in is performed on
either ArchStudio or Subversion. The bottom of Figure 3 shown some policy messages
presented after a source code check-in in Subversion. In this case, a policy was triggered
just after the check-in. This policy updated the existing traceability links to the new
versions of the source code. However, another policy denied this action for immutable

architectural elements (immutable architectural elements represent configurations of the
system in a fixed moment in time, and should not be changed). Finally, a third policy
removed the old traceability links from previous versions of the source code.

5. Implementation Details

ArchTrace uses XADL 2.0 [6] to describe software architectures. One of the main
reasons for choosing xADL 2.0 is its extensibility mechanism through XML Schemas.
xADL 2.0 is composed of a set of schemas and each of them can be extended to include
new features. Our work relies on the xADL 2.0 Implementation Schema, which defines
an abstract element that is a placeholder for data that relates to the implementation of
architectural elements. We have extended this abstract schema with a concrete schema
that adds traceability to source code stored in configuration management repositories, as
shown in Figure 4. Specifically, we support the tagging of architectural elements with a
series of configuration items.

1
1 ComponentType :
______________ == |mm——m——————===
1 InterfaceType %_: Implementation i
! ConnectorType — T ZF ______
1

ConfigurationManagementImplementation

Notation _*‘ Configurationltem |

Box: Element name (: Type)
Dashed box: Existing element Name : string
Hierarch: Sub-elements
Italic: Abstract element

A: Extension
No cardinality: 1 element
*. Optional multinle elements

Version : string

Repository :

Figure 4. Proposed xADL Schema

Our schema consists of an element named
ConfigurationManagementImplementation, which is composed of a set of
Configurationltem elements. Each Configurationltem is represented by the tuple <name,
version, repository>, where name is the name of the configuration item, version is the
selected version of the configuration item, and repository is the configuration
management repository address where the configuration item version is stored. For
example, the traceability links of a Print component, version 2.0, can be described via
our schema wusing the information shown in the following two tuples:
<“Model/Printer.java”, 1.0, svn://server/src> and <“Controller/Command.java”, 2.0,
svn://server/src>.

Our tool distinguishes four types of policies: architectural element evolution
policies, implementation evolution policies, pre-trace policies, and post-trace policies.
The architectural element evolution policies are executed if some architectural element
has been added, removed or changed. The most common change in an architectural
element is related to its mutable state and sub-architecture. The implementation
evolution policies are executed when new versions of source code are created in the
repository. The main usage of policies of this type is to update existing traceability links
when source code evolves. The pre-trace policies are executed just before a traceability

link is added or removed. This type of policy allows detection of inconsistencies among
the traceability link that is being created or removed and other traceability links that
already exist. Finally, the post-trace policies are activated after the creation or removal
of a traceability link. This allows the definition of policies that update other traceability
links when some traceability links are effectively added or removed. The main
difference between pre-trace and post-trace policies is that post-trace policies cannot
rollback the action. Moreover, post-trace policies run if, and only if, the traceability link
was “committed” by all pre-trace policies. Each ArchTrace policy is implemented as a
Java class that follows a specific interface, shown in Figure 5.

<< interface >>
ArchTracePolicy
(from edu::uci::ics:archtrace:policies

+getDescription ():String
+getRationale ():String

L

<< interface >> << interface >>
PreTracePolicy ArchitecturalElementEvolutionPolicy
(from edu::uci::ics:archtrace::policies) (from edu::uci::ics:archtrace::policies)
+execute(trace:Trace,action:byte):void +execute(architecturalElement :ArchitecturalElement ,action:byte):void
<< interface >> <<interface >>
PostTracePolicy ImplementationEvolutionPolicy
(from edu::uci::ics:archtrace::policies) (from edu::uci::ics::archtrace::policies
+execute(trace:Trace,action:byte):void +execute(configurationtem: Configurationltem ,action :byte):void

Figure 5. Policies API

The set of nine build-in policies of ArchTrace is composed of one architecture
evolution policy, one implementation evolution police, four pre-trace policies, and three
post-trace polices, as shown in Table 1.

Table 1. Built-in policies

TYPE POLICY

Arch evol |Copies all existing traceability links to the new version of the architectural element.

Impl evol |Automatically updates traceability links when a new version of a configuration item is available.

Suggests traceability links to more recent configuration item version if a traceability link is created to older version.
Denies traceability links creation or removal on immutable architectural elements.

Denies traceability links creation to more than one version of the same configuration item.

Denies traceability link creation to sub configuration items if the composite configuration item is already traced.

Pre-trace

Removes traceability links from old configuration item versions when a traceability link is created to a newer version.
Post-trace |Removes traceability links from sub configuration items if a traceability link is created to a composite conf. item.
Suggests related traceability links when a pattern of traceability links creation is detected via data mining.

6. Conclusion

This paper has presented a tool for the creation and evolution of traceability links among
architectural elements and source code. Some positive aspects of this approach are the
graphical support for traceability links establishment, querying and evolution, and the
policy-based infrastructure, together with nine built-in policies.

Some of our future works include the use of ArchTrace to leverage configuration
management commands to the architectural level, the adoption of new functionalities to
allow build, release, and deploy driven by architectural elements, and the addition of
other configuration management systems, such as Odyssey-VCS [10], that are based on
high level meta-models. This last feature would allow, for example, traceability links
among components and the UML artifacts that internally model the components.

7. Acknowledgments

This work is sponsored in part by NSF grants CCR-0093489 and 1IS-0205724. We also
would like to thank CAPES for the financial support under grant BEX0323/04-7.

8. References

1.

Aldrich, J., Chambers, C. and Notkin, D., ArchJava: Connecting Software
Architecture to Implementation. in International Conference on Software
Engineering, (Orlando, USA, 2002), 187-197.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A. and Merlo, E. Recovering
Traceability Links between Code and Documentation. /[EEE Transactions on
Software Engineering, 28 (10). 970-983.

Bosch, J. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison Wesley, 2000.

Briand, L.C., Labiche, Y. and O'Sullivan, L., Impact Analysis and Change
Management of UML Models. in International Conference on Software
Maintenance, (Amsterdam, Netherlands, 2003), 256-265.

Collins-Sussman, B., Fitzpatrick, B.W. and Pilato, C.M. Version Control with
Subversion. O'Reilly, 2004.

Dashofy, E., Hoek, A. and Taylor, R.N., A Highly-Extensible, XML-Based
Architecture Description Language. in Working IEEE/IFIP Conference on Software
Architectures, (Amsterdam, Netherlands, 2001), 103-112.

Dashofy, E., Hoek, A. and Taylor, R.N., An Infrastructure for the Rapid
Development of XML-Based Architecture Description Languages. in International
Conference on Software Engineering, (Orlando, F1, 2002), 266-276.

Eclipse Foundation. Eclipse 3.1, 2006.

Murta, L.G.P., van der Hoek, A. and Werner, C.M.L., ArchTrace: Policy-Based
Support for Managing Evolving Architecture-to-Implementation Traceability Links.
in International Conference on Automated Software Engineering (ASE), (Tokyo,
Japan, 2006).

10. Oliveira, H.L.R., Murta, L.G.P. and Werner, C.M.L., Odyssey-VCS: a Flexible

Version Control System for UML Model Elements. in International Workshop on
Software Configuration Management, (Lisbon, Portugal, 2005), 1-16.

11. Walls, C. and Richards, N. XDoclet in Action. Manning Publications, 2003.
12. Werner, C.M.L., Mangan, M.A.S., Murta, L.G.P., Souza, R.P., Mattoso, M., Braga,

R.M.M. and Borges, M.R.S., OdysseyShare: an Environment for Collaborative
Component-Based Development. in /EEE Conference on Information Reuse and
Integration, (Las Vegas, USA, 2003), 61-68.

13. Zimmermann, T., Weisgerber, P., Diehl, S. and Zeller, A., Mining version histories

to guide software changes. in Infernational Conference on Software Engineering,
(Edinburgh, Scotland, 2004), 563-572.

