

Run-Time Variability through Component Dynamic Loading

Leonardo Murta
1
, Aline Vasconcelos

1,3
, Ana Paula Blois

1, 2
,

Marco Lopes
1
, Carlos Junior

1
, Marco Mangan

1, 2
, Cláudia Werner

1

1.COPPE/UFRJ � System Engineering and Computer Science Program

P.O. Box 68511 � ZIP 21945-970 � Rio de Janeiro � RJ � Brazil

2. Pontifícia Universidade Católica do Rio Grande do Sul- PUCRS

Av. Ipiranga, 6681 � Prédio 30 � Bloco 4 � ZIP 90619-900 - Porto Alegre � RS

3.CEFET Campos (Centro Federal de Educação Tecnológia de Campos)

R. Dr. Siqueira, 273 � Pq. Dom Bosco � ZIP 28030-130 - Campos dos Goytacazes- RJ

{murta, aline, anablois, mlopes, carlosjr, mangan, werner}@cos.ufrj.br

Abstract

This paper presents a tool for dynamic loading of components into run-time environments. This tool was

implemented in the context of the Odyssey environment. Using this tool, it is possible to select, at run-

time, the desired set of functionality for the Odyssey environment. Depending on the selected

configuration, new components are downloaded and dynamically plugged into the environment.

Moreover, the dependencies among components are analyzed to keep the consistency of the whole

environment.

1. Introduction

Along the last six years, COPPE�s software reuse group has been working on the

Odyssey project [10]. Its aim is to construct a reuse infrastructure based on domain

models, product lines and component based development. This reuse infrastructure,

named Odyssey environment [12], entails different tools to support reuse activities.

Several of them were presented in previous editions of SBES tools session since 1998.

However, the Odyssey environment became a huge infrastructure, with drawbacks

related to size, performance, and usage complexity. Many tools are not necessary in

some particular usage scenarios, and it can represent an overhead to the whole

environment in these scenarios. For example, LockED is a tool for concurrent

development of domain models. This tool can be suppressed when only one person is

working on a given domain model. Moreover, some tools are functionally equivalent,

and only one of them is necessary to allow the environment execution, which is the case

of alternative persistence mechanisms.

To solve this problem, some reengineering had to be applied to the environment in

order to reduce its complexity and to allow its customization to specific needs. First,

each environment functionality was analyzed and labeled as mandatory or optional.

Mandatory functionalities were placed in a kernel module and optional functionalities

were placed in plug-in tools. After the reengineering, the kernel and correspondent

modules were named Odyssey-Light. Moreover, a generic interface named Tool was

created to encapsulate plug-in tools into software components managed by the kernel

module. Finally, a dynamic loading mechanism was implemented in the Odyssey-Light

kernel to allow run-time variability management, through the selection, download, and

installation of plug-in tools.

Considering the described scenario, the goal of this paper is to present the dynamic

loading mechanism adopted in the Odyssey environment along with the specifications

that must be followed by any tool that should be plugged in the infrastructure. The

paper is organized in five sections. Following this Introduction, Section 2 presents some

related works on the topic of system variability and Section 3 discusses the proposed

approach for run-time variability through components dynamic loading. Section 4

shows a usage example of dynamic loading of components into Odyssey-Light. Finally,

Section 5 presents some contributions, limitations, and future work.

2. System Variability

System variability is the ability of software to change its behavior during its life cycle

[11]. Due to cost-benefit relation, systems need to be released by means of different

flavors, with different sets of functionalities (e.g. desktop, standard, professional,

enterprise) [7]. Furthermore, independently of the situation, it is important to allow the

system configuration to fit the particular needs of customers.

System variability can occur at different phases of the software life cycle. Deployment

is the most known phase of system variability occurrence. Tools such as InstallShield

[1] and InstallAnywhere [13] allow the selection of the desired functionalities during

the deployment phase. This approach is less flexible than the ones based on run-time

variability, since it is not possible to install new functionalities during the software

execution. Moreover InstallShield and InstallAnywhere can only support the

customization through options already offered by the software manufacturer, not

allowing third-party tools to be integrated in the software.

At the system specification phase, different techniques allow the representation of

system variability, such as the usage of optional and variable elements in product lines

to support product selections [4] and the selection of features inside domain models

within a reuse process [8]. The advantage of these approaches is the possibility to

manage and trace variabilities since the analysis phase. However, they don�t support

system evolution without system modifications as the approach proposed in this paper.

Finally, at coding and building phases, compiler directives are commonly used to decide

what functionalities are needed.

Besides these specific approaches for particular phases of the software life cycle, [5]

suggests the usage of software architectures to guide the variability selection at anytime

in the life cycle, including run-time variability. This approach makes possible to define

variability at design time and apply this variability at design-time, invocation-time and

run-time. In our case, it is important to allow the Odyssey�s development team to

describe variability at development time and let software engineers (Odyssey users) to

select the functionalities at run-time.

3. Run-Time Variability through Components Dynamic Loading

An extensive study about plug-in approaches in the context of development

environments was performed. Some integrated development environments, such as

Eclipse [3], JBuilder [2] and NetBeans [9], were analyzed. This analysis provided a few

evidences of the main requirements regarding building a dynamic loading infrastructure

for the Odyssey environment, which are: (1) common interface for all tools, (2)

packaging specification, (3) dependency description, and (4) dynamic loading

mechanism.

3.1. Tools Interface

As mentioned before, all plug-in tools were purged from the Odyssey environment to

allow the creation of its Light version. However, every interaction point between these

plug-in tools and the environment were cataloged during the purge process. These

interaction points were used to build a generic interface named Tool.

The Tool interface, shown in Figure 1, is accessed by the Odyssey-Light environment

every time it needs to consult or notify plug-in tools. Each plug-in tool informs a list of

menus to be placed in the kernel user-interface by realizing the Tool interface. The

methods getEnvironmentMenu(), getConfigurationMenu(), and getModelingMenu() ask

the plug-in tool for menus to be shown, respectively, in the tools and preference

sections of the main window and in the modeling window of the Odyssey environment.

The method getPopupMenu() must declare popup menus to be shown over selected

model elements.

Figure 1: Tool interface.

Finally, the method setSelection() informs the tools about the current selected model

element in the modeling environment. The tool developer may consult this and other

model elements navigating through the Odyssey API. This functionality is relevant for

tools that need to present contextual information.

3.2. Packaging Specification

In our approach, a tool becomes a component when it implements the Tool interface and

is packaged in a Java Archive (JAR) file. Attributes in the JAR manifest file contain

meta-data relevant to the mechanism, such as the class name that implement the Tool

interface. Figure 2 shows the manifest defined for Ares, a reverse engineering tool.

Manifest-Version: 1.0
Tool-Class: br.ufrj.cos.lens.odyssey.tools.reverseEngineering.ares.AresFacade
Created-By: 1.4.2_01-b06 (Sun Microsystems Inc.)

Figure 2: Manifest of the Ares tool inside the tool JAR file.

3.3. Dependency Description

Usually, components require and provide services from/to other components. A tool,

packaged as a component, depends on other tools and has a set of attributes, such as

name, type, description and repository location. These characteristics and dependencies

are prescribed in the document type definition (DTD) shown in figure 3.

The available types of components are kernel, plug-in, and library. Kernel components

must be present inside the Odyssey environment (e.g. the Odyssey diagram editor).

Plug-in components may be selectively activated, providing variability to the

environment (e.g. the UML Criticism Assistant tool). Finally, library components are

required by another component (e.g. a specific JDBC library is required by the

relational persistence tool). Figure 4 shows an excerpt from Odyssey-Light component

descriptor (http://sety.cos.ufrj.br/releases/1.0.0.xml).

<!ELEMENT components (component)* >
<!ELEMENT component (dependency)* >
<!ELEMENT component EMPTY >
<!ATTLIST component
 type (kernel | plugin | library) #REQUIRED
 name ID #REQUIRED
 description CDATA #IMPLIED
 location CDATA #REQUIRED
>
<!ATTLIST dependency
 name IDREF #REQUIRED
>

Figure 3: DTD for component description.

<component type="plugin" name="odysseyxmi-0.0.5.jar" description="Odyssey XMI"
location="http://sety.cos.ufrj.br/releases/components">
 <dependency name="jmi.jar" />
 <dependency name="jmi-uml-1.4.jar" />
 <dependency name="mof.jar" />
 <dependency name="jmiutils.jar" />
 <dependency name="mdrapi.jar" />
 <dependency name="nbmdr.jar" />
 <dependency name="openide-util.jar" />
</component>

Figure 4: An excerpt from the unstable release of the components descriptor.

This excerpt defines a tool component for importing and exporting UML models using

XMI files. This tool, named Odyssey-XMI, has dependencies to other seven library

components. All these components must be downloaded and installed in the Odyssey

environment prior to the installation of the XMI tool itself.

3.4. Dynamic Loading Mechanism

The dynamic loading mechanism is responsible for the communication between the

Odyssey environment instance and the component directory, on the Odyssey download

server. Moreover, it uses algorithms that are similar to those defined by [6] to allow

dependencies detection and it implements an independent Java class loader to access

Java classes by means of a dynamically defined classpath.

The communication between the Odyssey environment instance and the component

directory, including the download of component descriptors and implementations,

occurs by means of the HTTP protocol. The download of multiple components occurs

in parallel, decreasing download time. All the installation process is presented to the

end-user, including the component download progress.

After the selection of new components, but before the download, some dependency

analysis is performed. This analysis search for other components that must be installed

in order to satisfy restrictions declared in the component descriptor. In addition, all

installed components are subjects of a reference counting algorithm, which detects

dangling library-type components and mark them for removal.

After the download phase, a new Java class loader is created to access the downloaded

classes. This new class loader is set as the context class loader of all existing execution

threads. Finally, the Java reflection API is used to access the class declared in the

manifest file of the component. This class is cast to the Tool interface and put in a

collection that contains all installed tools. This collection is used by the Odyssey

environment to communicate with the installed tools.

4. Usage Example

Dynamic loading resources are accessed in the integration view of the Odyssey

environment. This view allows users to set the URL of the component descriptor and to

set the local directory for components. It is also possible to refresh the list of available

components and to install or remove a specific component, as shown in Figure 5.a.

Figure 5: Component dynamic loading in the Odyssey environment.

After the install or remove options are selected, the integration wizard reports

component dependencies, as shown in Figure 5.b. Finally, the wizard downloads the

components, as shown in Figure 5.c, and dynamically loads them into the environment,

creating new menus and performing additional integration issues.

5. Conclusions

This paper presented a tool for component dynamic loading inside a run-time

environment. This tool was designed and implemented to provide a run-time variability

feature to the Odyssey environment. In this context, the Odyssey functionality set was

clustered and mapped into components by means of a Java interface (Tool interface)

and a component descriptor.

The main contribution of this approach is the automation and decentralization of

software distribution and customization issues. The dynamic loading of components

benefits both Odyssey end-users and developers. The end-user benefits from the ability

to customize the environment, reducing the interface cluttering by unused menu options

and increasing run-time and load-time performances. The developer benefits from the

ability to develop new tools using a well-know and non-intrusive programming

interface. The description of the mechanism may be useful to other developers facing

similar problems in software maintenance and evolution.

(a)

(b)

(c)

The Odyssey-Light environment kernel is available through InstallAnywhere [10].

Additional tool components and libraries can be downloaded and plugged through the

dynamic loading mechanism. Some new features, such as the description of conflicts

among components, will become available in the next releases of this tool. Also, some

of the original tools are still being wrapped into a component and will be available soon.

Finally, to integrate the tools in other environments it is necessary to remove the

dependencies from the plug-in tools to the Odyssey-Light and to build Adapters that

should intermediate the communication between the tools and the selected environment,

encapsulating these dependencies. In addition, for each new environment a particular

packaging specification should be provided.

Acknowledgements

The authors would like to thank CAPES and CNPq, for their financial support, and all

participants of Odyssey Project, who direct or indirectly supported this work.

References

1. Baker, B. The Official InstallShield for Windows Installer Developer's Guide. John

Wiley & Sons, 2001.

2. Borland. Java Development Solution for Java Applications: Borland JBuilder X. In:

http://www.borland.com/jbuilder/, Accessed in 03/02/2004.

3. Eclipse Foundation. Main Page. In: http://www.eclipse.org, Accessed in 03/02/2004.

4. Garg, A., Critchlow, M., Chen, P., et al. An Environment for Managing Evolving

Product Line Architectures. In: International Conference on Software Maintenance,

Amsterdam, Netherlands, September 2003, p. 358-367.

5. Hoek, A. Design-Time Product Line Architectures for Any-Time Variability Science

of Computer Programming, special issue on Software Variability Management,

2004.

6. Larsson, M. Applying Configuration Management Techniques to Component-Based

Systems. Licentiate Thesis, Department of Information Technology, Uppsala

University, Sweden, 2000.

7. Leon, A. A Guide to Software Configuration Management. Norwood, MA, Artech

House Publishers, 2000.

8. Miler, N., Werner, C. M. L., Braga, R. M. M. O uso de Modelos de Features na

Engenharia de Aplicações. In: IDEAS´00, Cancun, México, April 2000, p. 85-96.

9. NetBeans Community. In: http://www.netbeans.org, Accessed in 03/02/2004.

10. Odyssey. Projeto Odyssey. In: http://www.cos.ufrj.br/~odyssey, Accessed in

02/03/2004.

11. Svahnberg, M., Gurp, J., Bosch, J. A Taxonomy of Variability Realization

Techniques. Blekinge Institute of Technology, Sweden, 2002.

12. Werner, C. M. L., Mangan, M. A. S., Murta, L. G. P., et al. OdysseyShare: an

Environment for Collaborative Component-Based Development. In: IEEE

Conference on Information Reuse and Integration (IRI), Las Vegas, Nevada, October

2003, p. 61-68.

13. Zero G Team. InstallAnywhere Tutorial and Reference Guide. Addison-Wesley Pub

Co, 2004.

