
Optimal Variability Selection in Product Line

Engineering

Rafael Pinto Medeiros∗, Uéverton dos Santos Souza†, Fábio Protti† and Leonardo Gresta Paulino Murta†

∗Universidade do Estado do Rio de Janeiro

Rio de Janeiro, Rio de Janeiro, Brazil

Email: rafaelmedeiros@uerj.br
†Instituto de Computação, Universidade Federal Fluminense

Niterói, Rio de Janeiro, Brazil

Email: {usouza,fabio,leomurta}@ic.uff.br

Abstract—Software Configuration Management is being
adopted with success in the development of individual products,
mainly supporting the creation of revisions and sporadically
supporting the creation of variants via branches. However, some
emerging software engineering methods, such as product line
engineering, demand a sound support for variants to gener-
ate customized products from product lines. The adoption of
branches in this scenario does not scale due to the huge number
of interdependent variants. The main goal of this paper is to
systematize a way to select the best variants of a product line
to generate products according to specific user needs. Moreover,
our paper contributes on providing an algorithm for product
generation from product lines. Our algorithm can be easily
implemented in the existing product line approaches as an
alternative for product selection.

Keywords-And/Or Graphs, Software Configuration Manage-
ment, Software Versioning.

I. INTRODUCTION

Software Configuration Management (SCM) is a discipline

applied during the software development process to control

the software evolution [9]. As changes can happen anytime

during the software development process, SCM activities are

developed to identify the changes; to assure the changes

are being correctly implemented; and to inform the changes

to people who have interests on it [6]. Due to that, it is

possible to conclude that the main objective of SCM is not

to avoid changes, but provide control and coordination over

the changes. Moreover, it is also concerned on providing

consistency among interdependent components and allowing

the reconstruction of previous states of the software.

As an important system of SCM, the Version Control

System (VCS) is responsible for managing different versions

of a product. Usually, VCS are developed through models that

define the objects to be versioned, version identification and

organization, as well as operations to retrieve previous versions

and create new ones. However, versions can serve for different

purposes [5]. Versions that are used to replace other versions of

the same component are called revisions. On the other hand,

versions that live together with other versions of the same

component, acting as alternatives, are called variants.

SCM is being adopted with success in the development

of individual products, mainly supporting the creation of

revisions and sporadically supporting the creation of variants

via branches. However, some emerging software engineering

methods, such as product line engineering, demand a sound

support for variants to generate customized products from

product lines. The adoption of branches in this scenario does

not scale due to the huge number of interdependent variants.

In product line engineering, a software product line is

composed to represent the commonalities and variabilities of

a software family. According to [4] a product line is usually

combined with feature models and configuration knowledge,

responsible to identify the possible product features and how

these features interplay. The derivation process is fundamental

in product line engineering. This process consists in compos-

ing specific products from the product line according to some

user requirements. According to [8] the existing approaches

to model product line architectures are predominantly focused

on enumerating the available component versions for each

possible product that can be generated from the product line.

However, conceptual differences in product features and their

interrelationships are not easily expressed in the available

modeling constructs. On the other hand, a goal-based ap-

proach provides a natural mapping to modeling product line

architectures, considering the user needs during the product

generation.

The main goal of this paper is to systematize a way to

select the best variants of a product line to generate products

according to specific user needs. This can result in VCS that

are better prepared to support product line engineering and

other methodologies that focus on the conception of families

of products. Moreover, our approach formalizes this product

composition according to the SCM terminology. Product line

researchers can build upon our approach to implement their

derivation process according to their specific technologies (i.e.,

features model, architecture description languages, etc.).

This paper is organized into 5 sections besides this introduc-

tion. Section 2 presents some background related to software

versioning concepts. Section 3 introduces the combinatorial

problem that emerges from the product line scenario. Section

4 presents our approach to generate the optimal product from

a product line. Section 5 presents some related works on soft-

ware versioning. Finally, section 6 presents final considerations



and future works.

II. BACKGROUND ON SOFTWARE VERSIONING

During the development process, software engineers need

to build specific versions of the software. A software version

is structured by components, and each component also have

specific versions. However, the selection of different compo-

nents or different versions of the same components leads to

different versions of the software as a whole. At an exponential

rate, different software versions start to become possible of

building, even versions that are not aligned to the user desires

or requirements [5].

A version model identifies and organizes items that should

be versioned and items that should not be versioned. Each

SCM system provides its own version model according to the

target domain and builds over its own formalism. According to

Conradi and Westfechtel [5], there are many ways to represent

a version model, such as file-based models, where versioning

is applied on files and directories, and data-based models,

where versioning systems manage versions of objects stored in

a database. Other resources are commonly applied to express

versioning rules, such as textual languages.

The version model can be described in terms of a product

space and a version space. In order to achieve proper existence

of a software, it is necessary to define what composes the

software itself. In other words, the software components, their

role to the final product, their functions inside the software,

and their relationships to each other should be defined. This

arrangements of components is defined in [5] as the product

space. The product space represents a universe of items and

their relationships, without considering their versions.

On the other hand, based on the definition in [5], the

version space represents the universe of possible versions of

a software, highlighting the common traits and differences of

the versions of an item. The transformation of a non versioned

item (in the product space) into a single, double, or multi

versioned item can be seen as a binding of an specific moment

in time of the product space with the version space. Hence,

a software version is composed by versions of the software

components, and generated by the combination of the product

space with a moment of existence of each component in the

version space. An item without this moment of existence in

the version space is a non versioned item, with its changes

implemented through overwriting.

A set of versions can be defined basically in two ways

[5]: extensional versioning and intensional versioning. We

can differ extensional from intensional versioning due to

the reasons that demand the generation of a new version.

Extensional versioning is realized through enumerating its

components’ versions; from this point, the user is able to

retrieve a version vx, apply changes over vx, and generate a

new version vz . Intensional versioning is capable of generating

versions from larger spaces to satisfy a set of goals established

by the user.

As a consequence, extensional versioning only allow the

retrieval of previously created versions, while intensional ver-

sioning allows the retrieval of versions on demand, combining

component versions that may never worked together before

and that can potentially generate inconsistent software versions

in terms of the user needs. This is one of the main reasons why

current SCM systems usually adopt extensional versioning.

III. THE OPTIMAL INTENSIONAL VERSION PROBLEM

An object base is defined as a combination of product

space and version space, comprehending all the versions of a

software [5]. This base contains all the software components,

all their versions, non versioned objects and their relationships.

The arrangement of an intensional version can be seen

as a selection of objects inside the base in a way that the

selected objects are enough to build the product version. This

selection is structured to satisfy the needs that motivated the

product development. During the versioning process, these

needs are transformed into affirmatives, named versioning

rules. Therefore, the selection is directed by a set of versioning

rules.

This method leads to a combinatorial problem inside the

intensional versioning. From a large number of potential

versions, only a few of them sustain the consistency needed to

satisfy the set of versioning rules. In summary, the configura-

tion process is based on satisfying restrictions and demands to

lead to a functional resulting software version. The versioning

rules in this article represent restrictions and demands, and the

object base is the universe of all possible versions, including

inconsistent ones.

According to Conradi and Westfechtel[5], the most difficult

factor when facing the combinatorial problem on intensional

versioning is to eliminate inconsistent versions. After that, it

relays on the configurator to build the version that matches a

certain query.

We present a formalization to the optimal intensional ver-

sioning problem as follows:

Problem: OIV – Optimal Intensional Version
Input: An object base and a set of versioning rules

Output: To find in the object base, if possible, an optimized

version of the software that satisfies the set of versioning rules.

In this article the software’s object base is represented

through an And/Or graph, according to the representation

introduced in [5]. And/Or graphs [12] provide a general

model for integrating product space and version space. An

And/Or graph is a directed graph G, such that every vertex

v ∈ V (G) possesses a label f(v) ∈ {And,Or}. In this graph,

the directed edges represent dependency relationship among

the vertices: And-type vertices (represented through an arc

between its out-edge) depend strictly on all its out-neighbors;

Or-type vertices depend only on one of its out-neighbors.

To represent the object base the source vertex maps to the

software as a whole, and the other vertices map to software

modules or components and its versions. In this graph, the

And out-edge represent composition relationship and the Or

out-edge represent possible versions of an item.

According to [5] a distinction is made between And and Or



edges, which emanate from And and Or nodes, respectively.

An unversioned product can be represented by an And/Or

graph consisting exclusively of And nodes/edges. A versioned

product is modeled by introducing Or nodes. Versioned ob-

jects and their versions are represented by Or nodes and And

nodes, respectively.

For example, Figure 1 illustrates an And/Or graph repre-

senting a base of objects. It is important to notice that fine-

grained visibilities of an object base can also be represented

by And/Or graphs using the same formalisms discussed in this

paper. However, we focused our examples on a coarse-grained

visibility to allow a better understanding of the problem and

our proposed solution. The main difference of coarse and fine

granularity is the number of components and their versions,

which enforces the necessity of faster algorithms to solve the

problem when fine-grained components are in place.

IV. SOLUTION TO THE OIV PROBLEM

In this section we introduce a transformation of the OIV

problem into a combinatorial problem related to And/Or

graphs (MIN–AND/OR). Through this transformation we sys-

tematize a process where the versioning rules are converted

into weights at the edges of the object base’s graph. Thus,

we present an approach that enables the development of

algorithms for solving the problem of intentional versioning.

In addition, we present a backtracking algorithm for MIN–

AND/OR which in turn solves the OIV problem.

The MIN–AND/OR problem consists on finding a subgraph

(solution subgraph) that matches a set of restrictions consid-

ering a weighted And/Or graph with a source vertex s. We

introduce the definition of the MIN–AND/OR Problem[11] as

follows:

Problem: MIN–AND/OR

Input: An acyclic And/Or graph G=(V,E) properly connected
and weighted with a source vertex s ∈ V , where each vertex v
possesses a label f(v) ∈ {And,Or} and each edge possesses a
weight τ(e) ≥ 1.

Output: A subgraph H = (V ′, E′) of G such as the sum of the
weights of its arcs is minimum, and satisfies:

1) s ∈ V ′;
2) if v ∈ V ′ and f(v) = And then all out-arcs of v must

belong to E′;
3) if v ∈ V ′ and f(v) = Or then exactly one of the out-arcs

of v must belong to E′.

To transform the OIV Problem into the MIN–AND/OR

Problem, it is necessary to weight the And/Or graph G

(representing the object base) according to the query built from

the versioning rules.

A. Weighting the And/Or graph G

Considering the And/Or graph G it is possible to add

weights to its edges using two types of versioning rules:

• Configuration Rules: a series of affirmative statements

originated from questions asked to the stakeholders of the

software; from these affirmatives, it is possible to exclude

some versions from the space of possible versions. As an

example of the formulation of the configuration rules,

the configuration manager can ask how the user com-

municates with the system (local access, remote access).

It becomes possible then to formulate the configuration

rule: the software must provide local access support. This

configuration rule discards the components that provide

remote access or portability features, because they are not

demanded. These rules consider the functional require-

ments of the product being generated, and can be replaced

by an existing feature-based approach if the product line

engineering process already has one in place.

• Classification/Qualification rules: a set of items classi-

fied/qualified considering their priority to the stakeholders

according to the needs and demands of the software.

For instance, the stakeholders can ask for a product

that allows high-end control capabilities and is efficient.

The configuration manager then is able to formulate the

Classification/Qualification rules: Control Capability, Ef-

ficiency. Versions of components that best excel at those

two items are preferred. These rules consider the non-

functional requirements of the product being generated.

They are important to solve situations where there are

open alternatives even after imposing the rules related to

functional requirements.

1) Applying Configuration Rules: The set of configuration

rules characterizes the first process of weighting the graph of

the base of objects. The possibilities that do not accomplish the

defined configuration rules are unable of existing in a solution-

subgraph with non-infinite cost. Along the weighting process,

the configuration rule analysis dictates if an edge receives an

infinite weight or not, sometimes excluding a large amount

of versions (by excluding one component, all its versions are

automatically excluded).

The configuration rules are therefore defined as affirmative

statements, originated from a set of questions answered in

cooperation with the stakeholders. The software engineers

should create questions with a high capability of constraining

the version space.

When applying configuration rules, the questions work as a

way to formulate demanding affirmatives - the configuration

rule itself. All edges of G pointing to vertices that oppose

the affirmative receive infinite weight; all other vertices have

their edges set with weight 1. According to this algorithm,

a version with non-infinite weight is a version that matches

the configuration rule not necessarily by accomplishing the

configuration rule, but by not going directly against it.

2) Applying Classification/Qualification Rules: With the

application of the classification/qualification rules, edge values

bounded to each component will emerge. By doing so, some

versions shall protrude, therefore distinguishing themselves

from the others. The stakeholder must classify some criteria,

according to his/her priority, aiming to reflect what is expected

in the final version of the software. In other words, the



System 

Advanced Standard 

Module A Module B Module C Module D 

Version 2 Version 1 Version 1 Version 2 Version 1 Version 2 Version 3 Version 2 Version 1 

Component 1 Component 2 Component 3 Component 4 Component 5 Component 6 Component 7 Component 8 

Version 1 Version 1 Version 1 Version 1 Version 2 Version 1 Version 1 Version 2 Version 1 Version 1 

Fig. 1. Example of a object base represented by an And/OR graph.

stakeholder is demanded to prioritize non-functional aspects

of the software.

In this paper we named these criteria as Classifica-

tion/Qualification rules. As an example of classification rules,

the stakeholders can be asked to classify the following items

according to their priority: Control Capability, Efficiency, and

Support. It becomes possible, after this step, to choose the

version that best matches the stakeholder’s priorities.

The Classification/Qualification rules initiates by consider-

ing a set of criteria {s1, s2, s3,...,sk}, in general, some of

these criteria can be obtained from the ISO/IEC 9126 for the

evaluation of software quality [2], such as: usability, efficiency,

maintainability and portability. These criteria are classified by

the stakeholder with the tags high relevancy, regular relevancy,

low relevancy. Next, the software engineer classifies each

component of the object base according to the quality (bad,

regular, good, excellent or does not interfere/ not relevant) of

each sj criterion.

After that, it is proposed a weighting process of the And/Or

graph as follows:

To each component ci do:

1) Add

• weight 0 to the criterion classified as excellent or

not relevant;

• weight 1 to the criterion classified as good;

• weight 2 to the criterion classified as regular;

• weight 3 to the criterion classified as bad.

2) Calculate

• the sum of the weights of the high relevancy criteria

as HR;

• the sum of the weights of the regular relevancy

criteria as RR;

• the sum of the weights of the low relevancy criteria

as LR;

3) Sum W to the weight of the vertex in-edge that repre-

sents the component ci (W = 3HR+ 1.5RR+ LR).

The W value is calculated to ensure that the weight of a high

relevancy criterion is the double of the regular relevancy crite-

rion weight and the triple of the low relevancy criterion weight.

Consequently, a high relevancy criterion classified/qualified as

good corresponds to a regular relevancy criterion classified as

regular or to a low relevancy criterion classified as bad. Clearly

the higher relevancy criteria weights more, what is justified

because of the MIN-AND/OR problem structure. The MIN-

AND/OR Problem consists on the weight minimization in

which the higher relevance criteria weight is expected to be the

smallest. Figure 2 illustrates the object base shown in Figure

1 after applying a possible set of versioning rules.

At this point it is important to highlight that other possible

versioning, with different versioning rules, would produce

another weighting of the G graph; however, as the object base

remains the same, the graph itself is not rebuilt. In addition,

even when there are changes on the object base, the G graph

is capable of easy adapting and still has not to be rebuilt.

With the And/Or graph properly weighted, it is possible to

state that:

1) a version of the software corresponds to a subgraph

solution-subgraph) of G, such as:

• The source vertex (representing the software) be-

longs to solution-subgraph.

• If a And-type vertex belongs to the solution-

subgraph then all its out-edges do as well.

• If an Or-type vertex belongs to the solution-

subgraph then exactly one of its out-edges does as

well.

This observation is easily verifiable. The out-edges of an

And vertex represents composition, that is, if a module

belongs to a version z so do all of its components. On

the other hand, out-edges of an Or vertex represents

version options of a component; as a software uses at

most one version of each component, this observation is

true.

2) To find the optimal intensional version of the OIV

Problem corresponds to find the solution-subgraph with

minimum cost of the G graph. In our example, the



System 

Advanced Standard 

Module A Module B Module C Module D 

Version 2 Version 1 Version 1 Version 2 Version 1 Version 2 Version 3 Version 2 Version 1 

Component 1 Component 2 Component 3 Component 4 Component 5 Component 6 Component 7 Component 8 

Version 1 Version 1 Version 1 Version 1 Version 2 Version 1 Version 1 Version 2 Version 1 Version 1 

∞ 1 

1 1 

1 

1 
1 

1 1 

1 5 1 3 1 1 1 1 2 

∞ ∞ 20 2 3 1 3 1 4 1 

1 
2 

1 2 
1 

1 

3 1 

3 

1 

3 

1 1 
1 

3 

1 

1 

2 2 

2 

Fig. 2. And/Or graph G representing an object base after applying the versioning rules.

optimal intensional version highlighted in red in Figure

2.

From these statements it becomes possible to adopt the

existing results in the literature regarding the MIN–AND/OR

Problem to achieve results to the OIV Problem. Among

the results of the MIN–AND/OR Problem, it is known that

the problem is NP -Hard in general. However, it becomes

polynomial when the G graph is a tree. In addition, it is

known that finding a viable solution (not necessarily optimal)

is polynomial [11], which means finding a version that satisfies

the configuration rules of the OIV Problem is also polynomial.

B. Backtracking algorithm to The MIN–AND/OR Problem

At this point, it is known that the And/Or Graph represents

the software object base; consequently a solution subgraph of

G corresponds to a specific version of the software. We present

the Algorithm 1 that, considering an And/Or graph G, returns

its optimal solution-subgraph, if there is such. In other words,

this algorithm finds the optimal solution to the MIN–AND/OR

problem and consequently to the OIV problem.

The algorithm is divided in 3 parts; in the first part it realizes

a topological sorting of the G vertices, which is possible

because G is an acyclic graph. The sorting assures that a

vertex vj (1 ≤ j ≤ n) is always before its out-neighbors

on the vertices arrangement.

Next, the procedure Generate is called to enumerate all pos-

sible solution-subgraphs of G. These subgraphs are stored

in V, where:

1) The vertices with the register flag set to 1 belong to the

current solution-subgraph.

2) If the position i in V represents an Or-type vertex that

belongs to the current subgraph, then exactly one index

j is stored in V[i], where vj is an out-neighbor of vi.

3) If the position i in V represents an And-type vertex

that belongs to the current subgraph, then a set with the

index j of each vertex vj which is an out-neighbor of

vi is stored in V[i].

4) If the position i in V represents a sink then an empty

set is stored in V[i].

With the V array properly populated, it becomes possible to

go through it building the solution-subgraph and calculating

its weight, which is done by the Cost procedure. When the

algorithm terminates, the result is the solution-subgraph with

the smallest weight.

The complexity of the algorithm is O(n.K) where K is

the number of possible solution-subgraphs, and the time to

generate each solution-subgraph is O(n).

V. RELATED WORK

In [1], Ghose and Sundararajan presented a work for mea-

suring software quality using pricing and demand data, quan-

tifying the degradation associated with software versioning.

Conradi and Westfechtel [5] introduced a uniform method

to represent version models using graphs, providing to con-

figuration managers a more flexible and illustrative way to

work with intensional and extensional versioning. In the same

direction, in this paper, we show that intensional versioning

rules can be represented by weights on the graph’s edges, and

the main problem on intensional versioning can be seen as a

classic combinatorial problem.

According to [7], product derivation is the process of

making decisions to select a particular product from a product

line and to customize it for a particular purpose. In product

derivation, the variability provided by the product line is

communicated to the users of the product line and based

on customers’ requirements, variants are selected from the

product line thus resolving the available variability. The most

important requirement for tool-supported product derivation is

obviously to support resolving variability. Users need tools

that present the available variability and let users decide

about choices interactively. Many SPLE tools for variability

resolution are model-based, e.g., they visualize feature or de-

cision models and allow users resolving variability by selecting

features [3] or making decisions [10]. The approach presented

in this paper can be adapted for variability resolution merging

selecting features and making decisions.



Algorithm 1: Backtracking for MIN–And/Or
input : An And/Or graph G; two arrays V and SS of n

positions (inicially empty).
output: SS storing the optimal solution-subgraph of G.
begin

Assume v1, v2, v3, ..., vn an arrangement of the vertex of
G, given by an topological sorting;
for i:=1 to n do

if vi is an And-type vertex then
V[i].out:=Oi;
(Oi is the set of index of the out-neighbours of vi);

else
V[i].out:={};

if i = 1 then
V[i].flag:=1;

else
V[i].flag:=0;

V[i].in:={}

smallest:=∞;
Generate(1,smallest,V,SS);

end
procedure Generate(i, smallest:integer,V, SS:array)

if i 6= n then
if V[i].flag=0 or vi is sink then

Generate(i+1,smallest,V,SS);
else

if vi is an Or-type vertex then
foreach out-neighbor vj of vi do

V[i].out := {j};
V[j].flag:=1;
V[j].in := V[j].in ∪ {i};
Generate(i+1,smallest,V,SS);
Clear(i,{j});

else
foreach out-neighbor vj of vi do

V[j].flag:=1;
V[j].in := V[j].in ∪ {i};

Generate(i+1,smallest,V,SS);

else
if Cost(V,1) ≤ smallest then

SS:=V;
smallest := Cost(V, 1);

end
procedure Cost(V : array i: integer)

if V[i].out 6= {} then
foreach j ∈ V [i].out do

value:= weight of edge(vi, vj) + Cost(V,j)

Cost:=value;
else

Cost:=0;

end
procedure Clear(k: integer Ok: set of integer)

foreach j ∈ Ok do
V[j].in := V[j].in \ {k};
if V[j].in = { } then

if V[j].out 6= { } then
Clear(j,V[j].out);

V[j].flag:=0;

end

VI. CONCLUSION

In this paper we built upon the representations of version

models introduced by Conradi and Wesfechtel [5] and pro-

posed an approach of graph weighting and search for obtaining

the optimal intensional version of a software system according

to the preferences of the stakeholder. We showed that a query

over the object base can be translated into a weighting of

a And/Or graph G, where its edges are weighted according

to specific criteria and priorities. In addition, we presented a

transformation of the Optimal Intensional Versioning Problem

to the combinatorial MIN–AND/OR Problem, thus utilizing

some of the MIN–AND/OR existing results to solve the OIV

Problem. Finally, we presented an algorithm that takes the

weighted And/Or graph G and finds, if possible, the optimal

version, that is, the version with the smallest cost that matches

all the existing conditions over the referred object base.

For future work, we would like to apply the proposed

algorithm in projects with different characteristics to evaluate

how the algorithms behave and if there are situations where

intensional versioning should be avoid at all. Moreover, we

intend to investigate situations where the stakeholder prefer-

ences or even the criteria relevance change dynamically. These

situations are common in dynamic software product lines, used

in self-adaptive systems at runtime.

REFERENCES

[1] A. Ghose, A. Sundararajan, Software versioning and quality degradation?
An exploratory study of the evidence, Leonard N. Stern School of
Business, Working Paper CeDER, New York, NY, USA, pp. 05-20, July
2005.

[2] ISO, ISO/IEC 9126 - Software engineering - Product quality, International
Organization for Standardization, 2001.

[3] K. Czarnecki, S. Helson, U.W. Eisenecker, Staged configuration using
feature models, Proc. of the 3rd International Software Product Line
Conference (SPLC 2004), Springer, Berlin/Heidelberg, Boston, MA,
USA, 2004, pp. 266-283.

[4] K.C. Kang, J. Lee, P. Donohoe, Feature-Oriented Product Line Engineer-
ing, IEEE Software, v. 19, issue 4, pp. 58-65, July/August 2002.

[5] R. Conradi, B. Westfechtel, Version models for software configuration
management. ACM Computing Surveys, v. 30, issue 2, pp. 232-282, June
1998.

[6] R. Pressman, Software Engineering: A Practitioner’s Approach. McGraw,
2009.

[7] R. Rabiser, P. Grünbacher, D. Dhungana, Requirements for product
derivation support: Results from a systematic literature review and an
expert survey, Information and Software Technology, v. 52, pp. 324-346,
2010.

[8] S. A. Hendrickson, A.van der Hoek, Modeling Product Line Architectures
through Change Sets and Relationships, 29th International Conference on
Software Engineering (ICSE’07), pp. 189-198, 2007.

[9] S. Dart, Concepts in configuration management systems, SCM 91 Pro-
ceedings of The 3rd International Workshop on Software Configuration
Management, ACM Press, New York, NY, USA, pp. 1-18, June 1991.

[10] T. Asikainen, T. Soininen, T. Männistö, A Koala-based approach for
modelling and deploying configurable software product families, Proc.
of the 5th International Workshop on Product-Family Engineering (PFE
2003), Siena, Italy, Springer, Berlin/Heidelberg, 2003, pp. 225-249.

[11] U. dos S. Souza, A Parameterized Approach for And/Or Graphs and X-
of-Y graphs. Master Thesis, Federal University of Rio de Janeiro, 2010.

[12] W. F. Tichy, A data model for programming support environments and its
application, Proc. of the IFIP WG 8.1 Working Conference on Automated
Tools for Information System Design and Development, New Orleans,
North-Holland, pp. 31-48, Jan 1982.


