Feature Modeling for Context-Aware Software Product Lines

Paula Fernandes, Claudia Werner, Leonardo Murta
Federal University of Rio de Janeiro
COPPE - System Engineering and Computer Science
P.O. Box 68511 - Rio de Janeiro, RJ 21945-970 Brazil
{paulacibele, werner, murta}(@cos.ufrj.br

Abstract

One of the first activities to develop a sofiware product
line is the feature analysis. This activity produces a
feature model to represent commonalities and
variabilities among products of a product line. Context-
aware applications use context information to provide
services and relevant information for their users. One of
the challenges to build a context-aware product line is
how to represent context information in a feature model.
This paper proposes a modeling notation, called
UbIiFEX, for representing context information and
defining context adaptive rules in a feature model.

1. Introduction

Context-aware systems are part of a wide range of
systems within ubiquitous computing [18]. These
systems use context information to provide relevant
services and information to the users. In different context
situations, users may access different data and exploit
different aspects of an application. For instance, when a
tourist arrives to a new place and accesses a mobile
tourist guide application in his smartphone, he expects
that recommended tours are based on his preferences and
location.

Software product line paradigm [13] explores
commonalities and variabilities in a set of applications
for a specific domain aiming at increasing productivity
and quality. It this way, it proposes a systematic software
development approach based on a product family. This
approach guides building new applications from reusable
assets and building the assets themselves. Furthermore,
this paradigm has proved itself as an efficient way to deal
with varying user needs [9].

Although, most approaches have focused on the
development of statically configured products using core
assets with variation points [7]. All variations are
instantiated before a product is delivered to customers.
Hence, these approaches provide development time
adaptation in which different versions of application

have been generated according to customers and runtime
environment specific characteristics.

For example, a mobile application such as a tourist
guide is intended to execute in a variety of mobile
devices and customized to different user preferences.
Thus, if development time adaptation is used, the number
of versions will increase exponentially. Mobile devices
have limited memory, storage and processing, and it is
not always possible to load at the same time all necessary
components to all runtime contexts.

This static focus is not adequate to deal with the
dynamism of context-aware applications because they
need a runtime adaptation in which applications adapt
their behavior according to context changes. Context-
aware application development should benefit from the
software product line concept in terms of reusability and
configurability. However, it introduces new challenges to
software product line engineering [16].

One of the first activities to develop a software
product line is the feature analysis. This activity
identifies externally visible characteristics of products in
a product line and organizes them into a model called
feature model [11]. A feature is a system property that is
relevant to some stakeholder and is used to capture
commonalities and variabilities among products in a
product line.

Feature modeling allows us to model the common and
variable properties of product-line members throughout
the stages of product-line engineering. Feature model is
used since early stages for deciding which features
should be supported by a product line and which should
not until product derivation. Therefore, for a context-
aware product line it is important to represent context
information in this model. Without this representation we
can not explicitly know how this information impacts in
the feature selection at runtime. We noticed that the most
part of well known feature model notations [4][8] do not
deal with this aspect in an effective way and they are not
concerned with separating this concept for a better
understanding of this kind of systems.

This paper proposes an extension to a feature notation
to represent context information explicitly in a feature
model. Moreover, we analyze the influence of this kind

of information in product variability and adaptive
decisions. For this purpose, we define new types of
features for representing context information in the
model. We also define new rules to represent the
relationship between features and contexts.

The remainder of this paper is divided into three
sections in addition to this introduction. Section 2
reviews some basic concepts related to software product
line development and context-aware systems, and
summarizes some related works. Section 3 presents
UbiFEX, a feature notation extension for modeling
context-aware product lines. Finally, section 4 concludes
this paper and discusses future directions.

2. Background

2.1. Software Product Lines

According to Software Engineering Institute (SEI), a
software product line is a set of software-intensive
systems sharing a common, managed set of features that
satisfy specific needs of a particular market or mission,
and that are developed from a common set of core assets
in a prescribed way [13]. Core assets are the essence of a
product line and represent configurable elements used to
build derived applications.

During the product line development process,
particular aspects of products can be highlighted. The
variability concept refers to points in the core assets
where it is necessary to differentiate individual
characteristics of products, being represented with a
feature model. In order to model variability, it is
necessary to represent all domain concepts and their
relationships explicitly.

A feature model represents a domain and aims to
make homogeneous the concepts among the participants
involved in the process, such as users, domain
specialists, and developers. It represents the features of a
system family, their commonalities and variabilities, and
the relationships among them. In addition, it has a high
level of abstraction and is used as a starting point for the
feature selection to new products instantiation.

An important relationship in a feature model is the
dependence among features that defines when some
features should be included in de product due to the
presence of other features. On the other hand, it may also
define when some features should be removed from the
product due to the presence of other features.

This kind of model has some important concepts: (1)
variation points establish the necessity of decision-
making related to one feature regarding which variants
will be used; (2) variants are available choices for a
variation point; (3) invariants mean fixed elements that
are not configurable in the domain.

For example, considering the mobile tourist guide
domain, we can have a functional feature “show map”.

However, maps can be represented in more than one
form, such as an image or a 3-D map. In this case, we
have a variation point with two variants (see Figure 1).
However, we can also have a feature “list hotels” that has
the same behavior for all products derived from the
product line. In this case, the “list hotels” feature is
considered an invariant.

2.2. Context-aware Systems

Context-aware systems are able to adapt their
operations to a specific context without explicit user
intervention. They use context information to provide
relevant services and information.

Many definitions of context are given in the literature.
Dey and Abowd [5] define context as any information
that can be used to characterize the situation of an entity
that is considered relevant to the interaction between a
user and an application, including the user and the
applications themselves.

Also, according to these authors, when dealing with
context, three entities can be distinguished: places (e.g.,
rooms, buildings, etc.), people (e.g., individuals and
groups), and things (e.g., physical objects, computer
components, etc.).

In the literature [1], some attributes for describing a
single context can be found: context type refers to the
category of context; context value means the raw data
gathered by a sensor; time stamp contains a date/time-
value describing when the context was sensed; source
describes how the information was gathered; and
confidence describes the uncertainty of this context type.

2.3. Related Work

There are many approaches to support context-aware
software development [12][6]. However, most of them
are not concerned with a systematic software reuse. Their
main focus is to solve specific problems for specific
domains.

The approaches based on software product line
usually propose a systematic software development
based in a product family, which can beneficiate context-
aware software development in terms of reusability and
configurability.

Lee and Kang [10] proposed a feature-oriented
approach to develop dynamically reconfigurable core
assets for product lines. Features can be selected and
configured at runtime. After feature analysis, feature
model is refined through feature binding analysis that
consists of two phases: feature binding unit
identification, and feature binding time determination.
Also, a dynamic binding relation is annotated with
preconditions. The feature binding graph, generated after
this analysis, provides an intuitive and visual description
of dynamically changing product configuration.

However, mechanisms to support the definition of
relevant context information used to describe
preconditions are not identified and context information
is not represented in the feature model.

Van der Hoek [17] presents the concept of any-time
variability, which involves the ability of a software
artifact to vary its behavior at any point in the life cycle.
According to the author, a solution to support this kind
of approach has to provide four main functionalities: a
representation to capture system variabilities; a tool to
specify these variabilities; a tool to resolve variabilities;
and tools to apply the result of this resolution, in
different life cycle points. This work does not exploit the
way how the context information is identified.
Furthermore, on the variabilities graphic representation,
there are not elements which identify how this
information influences the system dynamic configuration.

The approach proposed in this paper aims to provide
solutions to the weak points found in these works,
allowing an explicit representation of the relevant
context information to the domain in the feature model
and identifying how this information influences on the
system dynamic configuration.

3. UbIiFEX

UbIiFEX is proposed to be a feature notation that
provides context information representation and context
rules specification. UbiFEX extends Odyssey
environment [15] feature notation, called Odyssey-FEX.

This section is divided in four subsections. Section
3.1 presents the main characteristics of Odyssey-FEX
notation, used as base for the proposed extension.
Section 3.2 describes the features categories defined to
allow context representation. Section 3.3 and 3.4,
respectively, present expressions and rules used to
represent the context influence in the dynamic product
configuration. Finally, Section 3.5 introduces the initial
ideas to build a context simulation infrastructure.

3.1. Odyssey-FEX

The Odyssey environment provides support to
software reuse through domain engineering, product lines
and component based development techniques.

Odyssey-FEX [14] was developed to fill some gaps in
variability representation detected in other feature
notations that could lead to an incorrect modeling of a
system family. Some of these gaps are the lack of an
explicit representation of variation points and an
insufficient representation of dependency and mutual
exclusiveness relationship among features.

In this notation, features must be represented
according to three dimensions: category, variability, and
optionality. There are five categories representing feature
types: domain (functional and conceptual), entity,

operational environment,
implementation techniques.

Domain features are related to the core domain
functionalities and concepts. Entity features are the
model actors. Operational environment features represent
attributes of an environment that a domain application
can use and operate. Domain technology features
represent technologies used to model or implement a
specific domain requirement. Finally, implementation
techniques features represent technologies used to
implement other features.

According to variability classification, features can be
variation points, variants or invariants. These concepts
were previously presented in Section 2.1.

In respect to optionality, a feature can be mandatory
or optional. This classification indicates whether a
feature should be present in all products or not. The
optionality refers to the whole domain. In Odyssey-FEX
notation, optional features are represented in the model
with a dashed shape. It is important to notice that an
optional feature may become mandatory when other
features are selected. This situation may occur due to the
existence of composition rules among those features.

Composition rules define restrictions between
features. Odyssey-FEX defines two types of composition
rules: inclusive and exclusive. Inclusive rules represent
feature dependency. For example, when the antecedent is
selected the consequent has also to be selected.
Exclusive rules represent mutually exclusive feature
relationship. In this case, when the antecedent is selected
the consequent must not be selected for the same
product. These rules can be combined with boolean
expressions. These expressions can be composed by
more than two features, forming an expression
combination both for a rule antecedent and consequent.

domain technology, and

< <i_onceptual ==
Mobile Tourisk Guide

!

<=Functional ==
Shiow Map

1\

< <Funckional ==
Show 30 Map

<=Functional ==
Show Image Map

Figure 1. An example of Odyssey-FEX notation.

Odyssey-FEX applies relationship semantic in a
feature model, offering a stronger capacity of
representation and expression. Features are related to
each other using UML relationships, such as association,
generalization, and composition. In addition, the notation
links a wvariation point to their variants through
alternative relationships. This relationship expresses
variability in the feature model.

Figure 1 shows a part of a feature model to a mobile
tourist guide domain [3] built using Odyssey-FEX.

Odyssey environment also supports other feature
model notations, including the ones proposed by Gomaa
[8] and Czarnecki [4]. We decide to extend Odyssey-
FEX due to its high level of expressiveness in respect to
the other notations.

3.2. New Feature Categories

UbIFEX is proposed to represent context information
in an explicit form. For that purpose, we defined two
feature categories in addition of those described in the
previous section: context entity and context information.

Context entity feature was created to represent
relevant context entities for the domain. This relevance is
based on the influence of the entity on the system
behavior. For example, the mobile tourist guide system
has entities such as user, mobile device, or a specific
environment. The properties defined to a context entity
feature are: name and description.

Context entities can be characterized by context
information. Context information feature represents the
data that should be collected to describe a context entity,
which are relevant to domain applications adaptation.

Based on the attributes described in Section 2.2, we
defined a set of properties to this type of feature: name,
description, type (i.e., static or dynamic), base type (e.g.,
string, integer, etc.), initial value (when applicable), and
source. Some of these properties are application specific,
thus, they can be filled in during the domain analysis or
after the initial feature selection to derive an application,
according to the modeler decision.

If context features are modeled together with other
feature types, the final variability model may be polluted
with different concerns, compromising understandability.
For this reason, we recommend the use of a separated
model for context feature modeling. In this case,
relationships between the models are represented by
context rules. Odyssey environment allows filtering
features in different types of diagrams according to their
categories. In this way, we may have different views of a
single feature model.

Figure 2 shows a simple context model to mobile
tourist guide domain, representing the entities and
context information.

< <Conkex=k Enkiby ==
Mobile Device

lc < Conbext Infarmation |

= <Contexk Information > =
Runkirng Mermory |

Operational System

< =iCantexk Enkiky =2
SEr

LI
< =iContext Information= > |<<Context Information = |
Fosition Marme

Figure 2. A context feature model.
3.3. Context Definition Expressions

After modeling context entities and information, the
next step is the definition of the contexts that are
necessary to create the context rules. Context definition
is composed by a name and an expression.

<context-definition> ::= <expression>

<expression> ::= <CIF><relational-operator> <value>
| <expression> <logic-operator> <expression>
| NOT <expression>

<relational-operator> ::= > |<|>=|<=|=| <>

<logic-operator> ::= AND | OR | XOR

<value> ::= <string type> | <int type> | <float type>
| <boolean type>

Figure 3. BNF for context definition.

A context can be defined according to the BNF
notation (see Figure 3). An expression can be formed by
a context information feature (<CIF>), previously
described in the feature model, a relational operator, and
a value. Also, an expression can be a composition of
expressions using logic operators.

Figure 4 illustrates an example of a context definition
expression for the mobile tourist guide domain.

(Runtime Memory > 64) AND
(Operational System = “Symbian”)

Figure 4. Example of context definition expression.

In this way, we can define a context named Enough
Memory associated with the first expression. A context is
active when the evaluation of its expression is true.

3.4. Context Rules

Context rules specify how a specific context affects an
application configuration in the domain, determining, for
example, the decision about variant selection in a
variation point.

The construction of a context rule is similar to a
composition rule. The rule is formed by an antecedent,
the operator implies, and a consequent. The antecedent is
an expression that can contain contexts, features, and
logic operators. The operator implies means that if the
antecedent is true, then the consequent is selected. The
consequent is an expression that can contain features and
logic operators. For the domain used in this paper, Figure
5 shows an example of a context rule.

This rule can be used to optimize functionalities. For
example, when the tourist wants to visualize a city map,
the application analyses the active contexts and rules and
choose the better variant to the runtime context.

Enough Memory implies Show 3D Map

Figure 5. Example of a context rule.

The context feature model with context definitions
and context rules can be exported to an XML file. This
file can be used as input to generate, for example, a
middleware configuration file. These rules are also
represented in the feature model. Features that are part of
the consequent in some rule are marked with the rule
identifier. In this way, it is easier to identify which
features have been influenced by context.

3.5. Context Simulation

Starting from these proposed extensions, we are
working on a tool to simulate variations in the defined
contexts to analyze the behavior of the product line
architecture. The Odyssey environment domain
engineering process works with component-based
architectures and it is possible to map features to
application components.

In this way, we can identify inconsistencies between
composition rules and context rules. The advantage is
that it can be done at development time, reducing the
cases where there is no possible product configuration
and the application will probably fail.

For example, consider the previous mentioned mobile
tourist guide domain. The simulation follows the
following steps. First, we have to choose an initial
configuration for the product, selecting the initial
features. After that, we can simulate variations in the

context information features values, such as Runtime
Memory, and determine which contexts are active based
on context definition expressions. The next step is the
context rules analysis, to check if there are modifications
on the product configuration. If modifications are found,
a new set of features is selected and the consistency of
composition rules is checked. For a complete simulation,
these steps have to be repeated for each new generated
configuration.

This simulation can run on-line, immediately
notifying inconsistencies, or in batch mode, enacting
distinct scenarios and generating reports with all existing
inconsistencies.

4. Conclusions and Future Work

This paper presented a feature model notation to
context-aware product lines called UbIFEX. Some
extensions are proposed to an existing feature modeling
notation, named Odyssey-FEX, to support representation
of context information and dynamic product derivation.
In this way, UbiFEX proposes a solution for the weak
points found in the related work regarding context
representation, providing a better understanding and
representation of the relevant context entities and
information in a context-aware domain, using the same
type of model to represents other feature types.

That explicit representation of context is essential to
modeling context-aware applications. Contexts influence
directly the behavior of these applications. Therefore, it
is important to identify them since the first product line
development activities.

UbiFEX also promotes a first step to a dynamic
configuration of products based on context rules.
Moreover, it allows an early verification of the product
execution through context simulation.

Context information is a key element to produce self-
adaptive applications in ubiquitous computing [2]. For
this reason, our first concern was the way of dealing with
this type of information in the software product line
development. However, there are still many challenges to
build context-aware product lines, mainly due to the
dynamic adaptation aspect of this class of applications.

As future work, we are planning to evaluate the
proposed feature notation in a real scenario, modeling a
family of existing context-aware applications for mobile
devices. Then, we can analyze if relevant contexts and
adaptive rules can be represented in an effective way.
Since Odyssey environment supports other feature model
notations, we intend to estimate the effort to extend the
proposed approach to these notations.

Moreover, we also intend to use feature models to
dynamic product derivation, developing an automated
product variant selection based on features and rules
proposed in this paper.

5. Acknowledgments

The authors would like to thank CAPES and CNPq for
the financial support.

6. References

[1] Baldauf, M. and Dudstar, S. 2004. A survey on context-
aware systems. Tech. Report TUV-1841-2004-24, Tech.
Univ. of Vienna.

[2] Bardram, J. E. 2005. The Java Context Awareness
Framework — A Service Infrastructure and Programming
Framework for Context-Aware Applications, Third
International ~ Conference, Pervasive2005, Munich,
Germany, 98-115.

[3] Baus, J., Cheverst, K., and Kray, C. 2005. A survey of
map-based mobile guides. Map-based mobile services -
Theories, Methods, and Implementations, 197-216.

[4] Czarnecki, K., Helsen, S., and Eisenecker, U. 2004.
Staged Configuration Using Feature Models. In Proc. of
Software Product Line Conference (SPLC 2004), Lecture
Notes in Computer Science, Springer-Verlag, 266-283.

[5] Dey, A. 2001. Understanding and Using Context.
Personal Ubiquitous Comput. 5, 1 (Jan. 2001), 4-7.

[6] Garlan, D., Siewiorek, D., Smailagic A., and Steenkiste,
P. 2002. Project Aura: Toward Distraction-Free Pervasive
Computing. [EEE Pervasive Computing 1,2 (April 2002),
22-31.

[7] Gomaa, H. and Hussein, M. 2003. Dynamic Software
Reconfiguration in Software Product Families. In Proc. of
the 5th Int. Workshop on Product Family Engineering
(PFE), Lecture Notes in Computer Science, Springer-
Verlag, 435-444.

[8] Gomaa, H. 2004. Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures, Addison-Wesley Professional.

[9] Hallsteinsen, S., Stav, E., Solberg, A., and Floch, J. 2006.
Using Product Line Techniques to Build Adaptive
Systems. In Proceedings of the 10th international on
Software Product Line Conference (August 21 - 24,
2006). International Conference on Software Product
Line. IEEE Computer Society, Washington, DC, 141-150.

[10] Lee, J. and Kang, K. C. 2006. A Feature-Oriented
Approach to Developing Dynamically Reconfigurable
Products in Product Line Engineering. In Proceedings of
the 10th international on Software Product Line
Conference (August 21 - 24, 2006). International
Conference on Software Product Line. IEEE Computer
Society, Washington, DC, 131-140.

[11] Lee, J. and Muthig, D. 2006. Feature-oriented variability
management in product line engineering. Commun. ACM
49, 12 (Dec. 2006), 55-59.

[12] McKinley, P. K., Sadjadi, S. M., Kasten, E. P., and
Cheng, B. H. 2004. Composing Adaptive Software.
Computer 37, 7 (Jul. 2004), 56-64.

[13] Northrop, L. M. 2002. SEI's Software Product Line
Tenets. IEEE Softw. 19, 4 (Jul. 2002), 32-40.

[14] Oliveira, R. 2006. Formalization and Consistency
Checking in Variabilities Modeling. Master Thesis.
Federal University of Rio de Janeiro, Rio de Janeiro,
Brazil (in Portuguese).

[15] Software Reuse Team. 2008.
http://reuse.cos.ufrj.br/odyssey.

Odyssey Project.

[16] Sugumaran, V., Park, S., and Kang, K. C. 2006.
Introduction — Software product line engineering.
Commun. ACM 49, 12 (Dec. 2006), 28-32.

[17] van der Hoek, A. 2004. Design-time product line
architectures for any-time variability. Sci. Comput.
Program. 53, 3 (Dec. 2004), 285-304.

[18] Weiser, M. 1999. The computer for the 21st century.
SIGMOBILE Mob. Comput. Commun. Rev. 3, 3 (Jul.
1999), 3-11.

