
Semantic Conflicts Detection in

Model-driven Engineering

Valéria Oliveira Costa

1,2
, João M. B. Oliveira Junior

1
, Leonardo Gresta Paulino Murta

2

1
Instituto Federal de Educação, Ciência e

Tecnologia do Piauí, IFPI

Teresina, Brasil

valeria@ifpi.edu.br

joaomanoel@aluno.ifpi.edu.br

2
Instituto de Computação

Universidade Federal Fluminense, UFF

Niterói, Brasil

leomurta@ic.uff.br

Abstract— An important challenge of Model Driven Version

Control System (VCS) is to use conflict detection methods that

are appropriate for models. Methods that analyze only the syntax

of models can detect conflicts that do not exist in reality (false

positives) and can fail to detect conflicts that do exist (false

negatives). This paper presents a method to reduce the

occurrence of both false positive and false negative conflicts. For

this, the presented method provides an analyzer of the semantic

equivalence between models. Our method verifies if the model

versions are semantically equivalent, if one version semantically

contains the other version, and if there are conflicts between

versions.

Keywords- model-based version control; semantic conflict

detection

I. INTRODUCTION

 With the advent of the Model-driven Engineering (MDE),
which aims to facilitate the development of systems through
the creation, manipulation, and maintenance of models, it
became possible to direct the focus of the developers to design
applications at higher abstraction levels [1]. Thus, a system can
be constructed through the refinement of models that begins at
the highest level of abstraction and goes toward the lower
levels through the use of transformations [1].

In the context of MDE, during the development or
evolution of a system, multiple versions of a model can be
generated. Similarly to source code, this brings the necessity of
model-driven Version Control Systems (VCS). A VCS helps
the development team to manage the evolution of a software
product through consistent maintenance of its many variants
and revisions [2]. Therefore, a model-driven VCS manages
model version. To do so, it compares models, detects and
resolves conflicts, and makes the consistent merge of models.
Among the existing Model driven VCS we can mention
Odyssey-SCM [3], Smover [4], and Mirador [5].

One of the key concepts in the area of version control is the
conflict. Conflict is a set of contradictory changes where at
least one operation performed by the first developer does not
agree with at least one operation performed by a subsequent

developer [6]. A conflict is not desirable because it generates
an additional effort for the developer [7] , which means rework.
One might think that the time and effort needed to resolve a
conflict could be used to continue the development or evolution
of the system.

In this scenario, it may be noted that one important
challenge of the model-driven VCS is the use of a conflict
detection method that is appropriate and efficient to models.
According to [8], in order to obtain success in a model merge
process, it is necessary to understand not only the logical
structure of the model, but also its semantics. According to [9],
to resolve the conflicts, it is needed to identify the reasons of
the conflict. This is especially difficult when only syntactic
detection support is used.

 In a modeling process, there may be situations where the
same intention can be modeled in different ways. Thus, two
developers working in parallel may use different strategies to
model the same situation. A purely syntactic analyzer identifies
this difference as conflicting. After a manual analysis, it can be
verified that the conflict does not proceed, since the two
representations are semantically equivalent. This type of
conflict is false positive and reduces the efficacy of the conflict
detection method, since the method should not report erroneous
information to the developer.

One solution to reduce occurrences of false positive
conflicts is to understand the semantics of the models. This
understanding allows the identification of related syntactic
conflict that is actually a semantic equivalence. Furthermore, a
semantic analyzer also allows it to detect semantic conflicts.
These conflicts occur when modifications in a given model
element interfere in another model element even without
explicit syntactic relationships among them. Semantic conflicts
are more difficult to detect and, because of it, they generate
false negatives conflicts. These, in turn, are conflicts that exist
in reality, but unfortunately the conflict detection method
cannot diagnose them.

This way, a good method of conflict detection should be
able to identify semantic equivalences and not report them as

conflicts. This contributes to the reduction of false positive
conflicts. Also, it must be able to detect semantic conflicts,
thereby decreasing the number of undetected conflicts or false
negatives conflicts.

 To help solve the problems related above, this paper
presents a semantic conflict detection method for models. The
method focuses on the investigation of semantic equivalence of
models in order to reduce false positive conflicts. It also uses
the semantic understanding of the models to increase the
coverage of the conflict detection method. The increased
coverage decreases the likelihood of a semantic conflict
undetected by the method (false positives).

The rest of the paper is organized as follows: section II
presents important concepts about model-based version
control; Section III explains the proposed method; Section IV
shows an example of our method in action; Section V discusses
the technologies used in the implementation of the prototype;
Section VI presents some related works; and Section VII
presents the conclusion and future work.

II. BACKGROUND

Consider a scenario where the development team uses an
optimistic VCS. With this type of VCS, each developer can
work in an individual copy separately [2], until they decide to
socialize their copy with other developers. Initially, the original
version of the project, called base version, is stored in the
repository. Then, all team members download the base version
and start working on it separately. During socialization, the
developer´s version, called developer version, should be
analyzed and compared with the base version, and with the
latest version already committed into the repository, called
current version. The Fig. 1 shows this scenario. The process
that considers the information contained in the ancestral
version for calculating differences between two versions is
used in three-way merge [2].

Another concept used in this work is state-based merge [2].
In this type of merge, only the information contained in the
base version and its revisions are considered [2]. In this type of
merge, there are no records of the operations performed that
facilitate the understanding of the transformation from one
version to another. On the other hand, this type of merge is
more realistic, as it imposes no restriction over the
development environment. The complete state-based merge
process is composed of four phases [9]: comparison, conflict
detection, conflict resolution, and the merge itself.

III. SEMANTIC CONFLICTS DETECTION OF MODELS

This work is based on the before-mentioned state-based
merge process. However, as it focuses only on the
identification of semantic conflicts, it is restricted to the first
two phases: comparison and conflict detection.

In the comparison phase, our method receives the three
versions to be analyzed (base, current and developer versions).
The versions are automatically transformed into a set of Prolog
facts. Then, each Prolog version is analyzed in order to infer
indirect relationships. This step is done by a Prolog set of rules
that describes the semantic relationships of models according to

a specific metamodel. The versions are then compared to verify
if they are semantically equivalent or if one version
semantically contains the other. If the versions are not
equivalent, and if the current version does not contain the
developer version (or vice versa), then the conflict detection is
initiated. In this phase, four sets are created considering the
base, current, and developer versions: all model elements
added to base version to compose current and developer
versions and all model elements deleted from base version to
compose current and developer versions. The special
intersection among the sets of added and deleted model
elements of different versions (current and developer) indicates
conflicts.

The Fig. 2 provides an overview of the proposed method. In
the first activity, called Translation, the developer version
represents a version just produced by a member of the
development team as a revision of base version. On the other
hand, current version is the tip of the repository, created due to
a previous commit performed by other team members. This
way, current and developer versions were created in parallel,
and both are revisions of base version. The goal of this activity
is to transform these three versions into Prolog facts. Each fact
refers to an existing element or relationship in the model. In the
case of a relationship, there is involvement of a pair of
elements in general. This way, the Translate activity result is a
set of Prolog facts that represents all relevant syntactic
information contained in the analyzed model.

The second activity, called Semantic Enrichment, is

responsible for inferring new facts. To do so, this activity

combines the previously generated facts with Metamodel-

specific Rules. The Metamodel-specific Rules represent the

semantics of relationships in a given metamodel. This way,

they need to be set once and can be used for every model

compliant to the metamodel. For instance, in the context of

Use Case diagrams (UCD) of the UML metamodel, Tab. I

shows the semantic rules used by our method. Such rules help

on extracting semantics from the syntactic set of model

elements represented as Prolog facts.

Figure 1. Development scenario

TABLE I. USE CASE DIAGRAM SEMANTIC RULES

Semantic rules

Rule

1

2

3

4

Next, the third activity, called Conflict Detection is

performed. In this activity, the enriched Prolog facts of current

and developer versions are analyzed and compared to base

version. The analysis is done based on the three-way diff

concept, forming two pairs: the first involving the diff between

base and current versions and the second involving the diff

between base and developer versions. For each pair, two sets

of differences are computed: one that holds all added items

(Add) and another that holds all deleted items (Del). These

sets are computed according to (1) and (2):

Where . After the computation

of the additions and deletions sets, a conflict is detected if an

element of the model appears simultaneously in the set of

additions of the first pair and in the set of deletions of the

second pair or vice versa. It is important to emphasize that to

generate the set of semantic conflicts, the Metamodel-specific

Rules were previously used during the Semantic Enrichment

activity. Equation (3) denotes how the set of conflicts is

formed:

Figure 2. Our method overview

Where and can be any two variants in general, but in

the specific case of this work, = current and =

developer. Moreover, represents an especial intersection

between sets that overloads the equality property to match not

only identical elements. The matching between non-identical

elements is possible because our method takes into account the

syntactic rules of relationships described in the UCD

metamodel. When a relationship is used, not only the

relationship, but also the elements that compose it are verified.

So, if an actor is deleted by , while adds a relationship

that uses the same actor (e.g. an association between this actor

and a use case), a conflict is detected. This reasoning is

analogous to the use of other relationships of the UCD

metamodel.

The analysis of the , and Conflict sets may lead to

the following conclusions:

- If then the versions are semantically equivalent.

This means that the intentions of the developers were

similar. In this case, there is no conflict and any one of the

two versions can be chosen.

- If then one version semantically

contains the other. In this case, there is also no occurrence of

conflict and the intention of one developer entails the

intention of the other. Since there is no divergence of

intention, the most complete version should be chosen.

- If

then the versions differ among themselves, one version

semantically doesn´t contain the other but there is no

semantic conflict. In this case, a syntactic merge suffices.

- If then the versions semantically differ,

one version semantically doesn´t contain the other and there

are semantic conflicts. In this case, the Conflict set contains

the syntactic facts that are implying semantic conflicts.

In order to have a better understanding of our method,

section IV shows it in action.

IV. OUR METHOD IN ACTION

Consider the UCD of a bank control system as depicted in

Fig. 3, where Fig. 3.a shows the base version, Fig. 3.b shows

the current version and Fig 3.c shows the developer version.

These last two versions are revision of the base version.

The three versions have their files submitted to Translation

activity, as explained in the previous section. The results

produced in this activity are shown in Tab II. In this table,

each column shows the automatically generated facts for each

of the presented versions.

Then the Semantic Enrichment activity is performed

through the application of previously defined semantic rules.

These rules, written in Prolog, discover new facts created

through the indirect relationships among model elements, as

shown in Tab. III.

To illustrate the second activity of Fig. 2, consider the

diagram presented in Fig. 3.a. Note that the Natural Person

actor is indirectly associated with the Open Account use case.

The association occurs through inheritance between Natural

Person and Person actors. Considering the semantics of

inheritance, it can be said that Natural Person is a Person.

Furthermore, as Person is directly associated to the Open

Account and End Account use cases, we can say that Natural

Person is also associated with Open Account and End Account

use cases, although the association is not directly shown in the

model.

The discovery of the indirect relationships is a key factor

in order to enable the detection of semantic conflicts in our

method. The knowledge of those relationships allows us to

verify that a change made to an element X generates conflict

in an element Y, even if X and Y are not directly connected in

the model.

Tab. III shows the results of the second activity of Fig. 2

applied to the case shown in Fig. 3.

Figure 3. Model versions of a bank control system

The discovered facts are added to the files shown in Tab.

II. Consider the base version column of Tab. III. The first

Prolog fact of this column is association(natural_person,

open_account). This fact can be visually inferred in Fig. 3.a

where Natural Person actor is connected through inheritance

with Person actor, which is associated with Open Account use

case.

The third activity, Conflict Detection, computes the

following sets:

Delcurrent =

Addcurrent = { usecase(open_saving_account),

inheritance(open_saving_account, open_account),

association(natural_person, open_saving_account),

association(person, open_saving_account),

association(employee, open_saving_account)}

Deldeveloper = {actor(natural_person),

inheritance(natural_person, person),

association(natural_person, open_account),

association(natural_person, end_account)}

Adddeveloper = { usecase(cash_out_amount),

association(person, cash_out_amount)}

Next, the intersection between the elements of the sets is

calculated to detect occurrence of conflicts:

 Addcurrent Deldeveloper = actor(natural_person),

association(natural_person, open_saving_account) }

Adddeveloper Delcurrent =

Conflictcurrent, developer = { actor(natural_person),

association(natural_person, open_saving_account)}

It can be observed that actor(natural_person) and

association(natural_person, open_saving_account) operate

over with natural_person actor. This intersection represents a

conflict because an association requires the existence of both

model elements in its association ends. According to Tab. II,

natural_person is an actor. Moreover, according to Deldeveloper,

this actor was deleted in developer version. Meanwhile,

according to Addcurrent, a new association has been established

in parallel with this actor in current version. This scenario

shows that, in the same team, a developer is deleting an actor

while another is expanded its responsibilities in the same

system design. This situation indicates a semantic conflict

between the versions. This type of conflict is not detected

when only syntactic elements and direct relationships are

analyzed, leading to false negatives.

As shown in the example, the presented method

contributes to detect these conflicts by increasing the

efficiency of the detect conflict method. Moreover, the

computation of semantic equivalences identifies the use of

different relationships that have the same meaning. This is

a. base version

b. current version

c. developer version

TABLE III. SEMANTIC ENRICHMENT OF PROLOG FACTS

possible because semantic rules abstract the syntactic

differences of relationships and extract the meaning of such

relationships in the model as a whole. Thus, the method does

not identify these differences as conflicts and reduces conflicts

false positives reported to developer. This feature reduces the

rework generated for the team.

V. PROTOTYPE IMPLEMENTATION

We are implementing a prototype of our method for UCD.

Currently, the prototype entails activities related to

comparison and conflict detection phases. We are testing these

phases and we intend to extend our prototype in the near

future to other UML diagrams.

For the purpose of testing our prototype, we adopt

Papyrus
a
 to design use case models. This tool provides an

editing environment for EMF and UML models, among

others. For each model, Papyrus generates two important files:

a diagram interchange file, which contains the diagram

information such as position of elements, and an XML

Metadata Interchange (XMI) file, which contains the model

elements themselves.

Each XMI file is submitted to Translation activity to be

automatically transformed into a set of Prolog facts. The

a http://www.eclipse.org/papyrus/

model´s transformation to Prolog facts is made using the

OMG Model to Text (M2T) standard. The implementation of

the transformation is based on Acceleo
b

. Acceleo is a

generator that transforms models into code. It uses Model-

driven Architecture (MDA) to transform a model into text. To

perform the second activity, Semantic Enrichment, we adopt

the TuProlog
c
 library integrated with Java.

Our method was conceived to accommodate new types of

diagrams and metamodels. As previously discussed, it is not

restricted to proprietary model formats as input models are

XMI files. The support for a new diagram or even a new

metamodel requires three main tasks: writing a M2T

transformation to generate Prolog facts according to the new

diagram or metamodel, writing Prolog rules for the Semantic

Enrichment phase and writing syntactic rules in Java to be

used in Conflict Detection phase .

VI. RELATED WORK

In [10], a semantic conflict detection method is presented,

named Smover. The approach is based on semantic views of

interest and inspection strategies of elements that can be

configured by the user. A semantic view maps a metamodel to

another based on relevant aspects of the first. The output of the

transformation is a model in conformity with the second that

contains the aspects of interest. The conflicts found in the

original metamodel are syntactic conflicts, and those found the

mapped metamodel are semantic conflicts. Our method

transforms the elements and relationships into Prolog facts and

uses inference rules to help compare two models. Moreover,

we use only one metamodel to detect conflicts.

 Odyssey-VCS [11] is a Model-driven VCS that allows the

use of fine granularity for version UML 2 models. The conflict

detection is based in existence analysis of elements and

processing of attributes and relationships. It considers both

non containment and containment relationships. Our method

focuses in semantic conflict detection to all elements and

relationships of the UCD models.

b http://www.eclipse.org/acceleo/

c http://tuprolog.alice.unibo.it/

Prolog facts added by semantic rules application

base version current version
developer

version

association(natural_

person,open_account).

association(natural_

person,open_account).

association(natural_

person, end_account).

association(natural_

person, end_account).

association(natural_person,

open_saving_account).

association(person,

open_saving_account).

association(employee,

open_saving_account).

TABLE II. MODEL TO PROLOG TRANSLATION.

Contents of prolog files – activity 1
 base version current version developer version

actor(person). actor(person). actor(person).

actor(natural_person). actor(natural_person).

actor(employee). actor(employee). actor(employee).

usecase(open_account). usecase(open_account). usecase(open_account).

usecase(end_account). usecase(end_account). usecase(end_account).

 usecase(open_saving_account).

 usecase(cash_out_amount).

inheritance(natural_person, person). inheritance(natural_person, person).

 inheritance(open_saving_account, open_account).

association(person, open_account). association(person, open_account). association(person, open_account).

association(person, end_account). association(person, end_account). association(person, end_account).

association(employee, open_account). association(employee, open_account). association(employee, open_account).

association(employee, end_account). association(employee, end_account). association(employee, end_account).

 association(person, cash_out_amount).

Gerth et al. [12] present a method to detect conflicts that

takes into account the semantics of business process models.

This method decomposes the process model into fragments

and activities to make your comparison. Moreover, it creates

add, delete and move operations for fragments and activities.

The approach also provides a method to the resolution of

conflicts and uses individual strategies to resolve different

types of conflicts. The method uses change-stated merge. Our

work presents a method to state-based approach to UCD and

in the future other UML models. We also intend to

automatically resolve detected conflicts.

Koegel et al. [13] provide an algorithm to compute conflicts

on the operations that change the model. It also takes into

account the serialization of the application of these operations.

The conflicts are classified into hard and soft. The hard

conflicts must be resolved by the user and the soft ones

automatically resolved. However, different of our method it

does not take into account the semantics of the models and is

made for operation-based approach.

Mirador [5] uses a hybrid state and operation-based

approach. The merge is based on operation and detects direct

and indirect conflicts. Conflicts are detected by the before(a,b)

predicate where an operation a must come before an operation

b. The approach describes techniques for detection and

resolution of conflicts based on decision tables. The users can

customize the rules of the tables. These tables can take into

account the semantics and to use their rules to detect false

positives. The approach uses metametamodel Ecore extended

to compute differences between versions. Our method uses

inference rules of metamodel to help compute semantic

conflicts. It considers not only the false positive conflict

detection generated by similar situations but also false

negative conflict detection.

VII. CONCLUSION

This paper presented a conflict detect method to MDE. The

method expects three model versions as input (two variants

with a common ancestry) and verifies: if the variants are

semantically equivalent, if one variant semantically contains

the other, and if there are semantic conflicts to be resolved.

The process starts by transforming the models into Prolog

facts. The Prolog facts are semantically enriched by means of

metamodel-specific rules. Finally, semantic conflicts are

discovered via three-way diff technique.

 We also present an example that shows how changes in

different elements can interfere with other elements, even if

they are not directly connected. Due to the difficulty in

identifying this type of conflict, the method helps on reducing

the amount of false negatives conflict. Thus, it increases the

efficacy of the conflict detection method as a whole.

Moreover, the detection of semantic equivalence decreases

the amount of false positives conflicts reported to the

developer, whereas purely syntactical analysis detects

differences and reports them as conflicts. This feature also

contributes to the improvement of conflict detection method

because it reduces the rework of the team.

Currently, we are studying how to make the merge when

there are no conflicts are detected. In the case of the equivalent

models, the system must choose or suggest which model

should be considered the merged version. To help on this

suggestion, the traceability of indirect relationships should be

considered. The traceability can indicate the best model

designed.

As future work, we intend to support automatic conflict

resolution and collaborative merge. At the phase of conflict

resolution, heuristics may help on suggesting consistent

solutions. Regarding collaborative merge, traceability can also

figure as an important technique, visually guiding developers

from semantic conflicts to the syntactic elements that triggered

these conflicts.

We also intend to support additional UML diagrams and

expand the method to work directly on the metametamodeling

language, such as EMF and MOF, via the reflective API. This

would allow processing any metamodel, requiring only the

metamodel XMI file as input. Finally, we are planning to run

some experimental studies with the proposed method.

VIII. REFERENCES

[1] A. Cicchetti, F. Ciccozzi, e T. Leveque, “On the concurrent
Versioning of Metamodels and Models: Challenges and possible Solutions”,
2011, p. 16–25.

[2] T. Mens, “A state-of-the-art survey on software merging”,
Software Engineering, IEEE Transactions on, vol. 28, no 5, p. 449–462, 2002.

[3] L. Murta, H. Oliveira, C. Dantas, L. G. Lopes, e C. Werner,

“Odyssey-SCM: An integrated software configuration management

infrastructure for UML models”, presented at the Science of Computer
Programming, 2007, vol. 65, p. 249–274.

[4] K. Altmanninger, “Model Versioning – SMoVer”, Smover:

Configurable & Semantically Enhanced Conflict Detection in Model Version,

2011. [Online]. Available: http://smover.tk.uni-linz.ac.at/prototype.php.

[Accessed: 20-dez-2011].

[5] S. Barrett, P. Chalin, e G. Butler, “Table-driven detection and

resolution of operation-based merge conflicts with mirador”, Modelling

Foundations and Applications, p. 329–344, 2011.

[6] R. Conradi e B. Westfechtel, “Version Models for Software
Configuration Management”, ACM Computing Surveys (CSUR), vol. 30, no 2,

p. 232–282, 1998.

[7] J. G. Prudêncio, L. Murta, C. Werner, e R. da S. V. Cepêda, “To
lock, or not to lock: That is the question.”, Journal of Systems and Software,

vol. 85, no 2, p. 277–289, 2012.

[8] K. Altmanninger e G. Kotsis, “Towards accurate conflict detection
in a VCS for model artifacts: a comparison of two semantically enhanced

approaches”, 2009, p. 139–146.

[9] K. Altmanninger, M. Seidl, e M. Wimmer, “A survey on model
versioning approaches”, presented at the International Journal of Web
Information Systems, 2009, vol. 5, p. 271–304.

[10] K. Altmanninger, W. Schwinger, e G. Kotsis, “Semantics for
accurate conflict detection in smover specification detection and presentation

by example”, IJEIS, p. 68–84, 2010.

[11] L. Murta, C. Corrêa, J. G. Prudêncio, e C. Werner, “Towards
Odyssey-VCS 2: Improvements over a UML-based Version Control System”,
presented at the ACM, Leipzig, Germany New York, USA, 2008, p. 25–30.

[12] C. Gerth, J. M. Küster, M. Luckey, e G. Engels, “Detection and
resolution of conflicting change operations in version management of process

models”, Software & Systems Modeling, dez. 2011.

[13] M. Koegel, M. Herrmannsdoerfer,, e O. von Wesendonk,

“Operation Base Conflict Detection”, presented at the IWMCP10:
International Workshop on Model Comparison in Practice, Malaga, Spain,

2010.

