
Odyssey-MEC: Model Evolution Control
in the Context of Model-Driven Architecture

Chessman Corrêa Leonardo Murta Cláudia Werner

Federal University of Rio de Janeiro
COPPE - System Eng. and Computer Science

{chessman, murta, werner}@cos.ufrj.br

ABSTRACT
Model-Driven Development aims to use models as first

class artifacts in software development. Therefore, the need

to control model evolution in this context became as impor-

tant as to control the evolution of source-code. In Model-

Driven Architecture, a target model is generated from a

source model through a transformation process. Conse-

quently, there is a relationship among them. However, these

models may evolve independently due to modifications,

making them inconsistent with each other. In this scenario,

traditional versioning is fundamental, but it is not sufficient

to control the evolution of different interconnected models

that represent the same software. In this paper, we propose

a server side transformation, synchronization and version-

ing approach to control the evolution of models.

Keywords
Version Control, Model Versioning, Model-Driven Devel-

opment, Model-Driven Architecture, Model Evolution.

1. INTRODUCTION
Model-Driven Architecture (MDA) is the Object Man-

agement Group (OMG) framework for Model-Driven De-

velopment (MDD) [18]. One characteristic of this approach

is the generation of a target model from a source model

using a transformation engine. It means that the software is

represented by different models, most of the time in differ-

ent abstraction levels.

In large software projects, multiple people assuming spe-

cific roles and located at different places may modify re-

lated models independently. For example, a PSM (Platform

Specific Model) generated from a PIM (Platform Independ-

ent Model) may need to be modified because it does not

have all the necessary details to derive the source-code. In

other words, models may need to be updated in order to be

used to generate other models or source code.

Since these models are related with each other, modifica-

tions applied to a model may create inconsistencies between

them. However, as these models represent the same soft-

ware, inconsistencies cannot be allowed. For example, in-

consistencies between PIM and PSM introduce some diffi-

culties to generate PSMs tailored to other platforms. This is

especially true if PIM level changes are made in PSM in-

stead. In this case, the generation of PSM to a new platform

would not have PIM details that exist in the other platform.

It means that if a MDD project aims to create software for

different platforms, PSMs of each platform have to be con-

sistent with the corresponding PIM and with PSMs of other

platforms. It is also true for models in the same abstraction

level.

Model versioning is essential to control model evolution.

However, if source and target models are versioned inde-

pendently, there will be no guarantee that they are consis-

tent with each other. Since these models have to evolve

together, versioning is not enough to control their evolution

in MDA context. Therefore, these models have to be syn-

chronized before versioned.

Models synchronization is achieved from round-trip engi-

neering through bidirectional transformations that preserve

previous versions of existing models. However, if a syn-

chronization tool is not automatically executed, software

engineers may forget to use them, leading to inconsistent

models.

Based on these facts, this paper proposes a server side

model transformation, synchronization and versioning ap-

proach to control model evolution in MDA.

The rest of this paper is organized as follows. Section 2

briefly describes the Model-Driven Architecture. Section 3

discusses the key aspects of our approach. Section 4 pre-

sents some related works. Finally, the conclusion and future

work are presented in Section 5.

2. MODEL DRIVEN ARCHITECTURE
OMG was inspired by constantly shifting infrastructures,

requirements changing, and new emerging technologies to

create the Model-Driven Architecture (MDA) [18]. This

approach considers models as first-class development arti-

facts and uses them not only for understanding and commu-

nication, but also for design, construction, deployment, op-

eration, maintenance, and modification of a system.

2.1 MDA Models
MDA specifies four kinds of models: Computation Inde-

pendent Model (CIM), Platform Independent Model

(PIM), Platform Model (PM) and Platform Specific

Model (PSM) [18]. CIM represents the system require-

ments. It takes into consideration domain concerns, such as

the vocabulary used by the domain practitioners. CIM

represents a view of the system without computational de-

tails. PIM is a view of the system considering computa-

tional solutions that aim to be generic to any platform.

Thus, it represents a system that can be tailored to multiple

platforms, assuming that these platforms are compatible to

the architectural styles adopted in the corresponding PIM.

PM provides the technical concepts, requirements, and ser-

vices of a specific platform. PSM is a view of a system

considering the platform details. It can be seen as a merge

of PIM and PM, augmented by some changes specific to the

target platform.

2.2 Model Transformation
Model transformation is the process of creating a target

model from a source model of the same system. Although it

could be made manually, the MDA approach aims at auto-

mating this operation. This is a key factor to the increasing

MDA adoption over traditional software development.

In forward engineering, a model-to-model transformation

uses the CIM and other information to generate a PIM.

Subsequently, another model-to-model transformation

combines PIM and PM to create the corresponding PSM.

Finally, PSM is used by a model-to-text transformation to

generate the source-code to the specific software platform.

A model transformation uses mappings to create target

model elements from source model elements. Mappings

provide specification of how one or more target elements

are derived from source elements. It also may have map-

ping rules based on specific marks, like stereotypes and

tagged values. For example, a PIM class with the stereotype

<<entity>> may generate an EJB (Enterprise JavaBean)

class for the JEE
1
 platform.

During model generation, the model transformation should

also generate the record of transformation. It includes the

traceability links between source and target model ele-

ments and informs which parts of the mapping were used

during the generation. It is an important resource to support

synchronization.

It is important to notice that CIM, PIM and PSM are in dif-

ferent abstraction levels. This mean that CIM-PIM and

1 http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

PIM-PSM transformations are vertical transformations

among different abstraction levels. However, it is also pos-

sible to generate models in the same abstraction level

through horizontal transformations, such as PIM-PIM and

PSM-PSM.

2.3 MDA Application
The application of MDA is relatively simple. It can be di-

vided into two main phases: infrastructure setup and trans-

formation. The infrastructure setup starts with the creation

of mappings based on a platform or a set of platforms.

These mappings will be used by transformations. In addi-

tion, the marks to be applied on a PIM may also be defined,

usually through a Profile [19].

After this initial setup, the software engineer uses a model-

ing tool to create a model (e.g., a PIM). Afterwards, that

model may be marked according to the available Profiles.

Finally, the transformation is executed, using the mappings

and the marked model to generate the corresponding model

(e.g., a PSM) and the record of transformation.

This scenario focuses on forward engineering. However, it

is also possible to occur reverse engineering transforma-

tions, generating a PIM from a PSM.

3. ODYSSEY-MEC
In this section we introduce Odyssey-MEC (Odyssey for

Model Evolution Control), a server side transformation,

synchronization and versioning approach to control MDA

models evolution.

In the following, we detail our approach presenting its ar-

chitecture, model infrastructure, model repository, model

versioning, model transformation, record of transformation,

element search, and model synchronization.

3.1 Architecture
The architecture of the approach is shown in Figure 1. It has

four types of repositories: Transformation Mappings, PIM,

PSM, and Record of Transformation. The Transformation

Mappings Repository (TMR) stores the transformation

mappings to be used by the transformation engine. These

transformation mappings are created by a transformation

engineer, as specified by Bacelo et al [1]. PIM and PSM

Repositories store PIMs and PSMs, respectively. It is

worth to notice that these repositories persist versioned

models. Moreover, each platform has its own PSM reposi-

tory. Record of Transformation Repository (RTR) stores

the Record of Transformations (RT).

Our approach comprises three main components to control

model evolution: Odyssey-VCS [15, 17], Odyssey-MDA

[1], and a synchronization engine (SE). It also uses a Trans-

action Manager (TM) component to control the synchroni-

zation and versioning process in a transaction context. The

Odyssey-VCS component is used for model versioning and

the Odyssey-MDA component for model transformation.

Odyssey-VCS has hooks that execute the TM and the SE

when a model is checked in. SE uses Odyssey-MDA to

generate target models, and Odyssey-VCS to access the

models to be synchronized and their versioning data. It also

uses RT as an auxiliary resource to synchronize the models.

Finally, an Odyssey-VCS client is used to communicate

with Odyssey-VCS server (it can be any CASE tool that

exports models through XMI 2.1 format). Odyssey-VCS

client communicates with Odyssey-VCS server through

Web Services [4].

Figure 1. Odyssey-MEC Architecture

3.2 Model Infrastructure
OMG chose UML (Unified Modeling Language) as the

standard modeling language for MDA. Therefore, our ap-

proach controls the evolution of UML models.

Although OMG uses MOF (Meta Object Facility) as UML

meta-model, Odyssey-MEC uses the Eclipse Ecore meta-

model [5]. The use of Ecore instead of MOF is not an ob-

stacle to control the evolution of UML models because

EMF uses XMI (XML Metadata Interchange) [20] for ex-

ternalizing UML models. Client tools just have to use the

same XMI version used by EMF (version 2.1).

3.3 Model Repository
Model repositories are used to store models. In our case, it

is necessary to store all versions of a model to control the

model evolution.

Due to the lack of versioning repositories for EMF, we

adopted Odyssey-VCS as our versioning component, as

detailed in Section 3.4.

3.4 Version Control
Version control is a key resource to control the evolution of

models during development and maintenance. It is used to

generate a history of model versions and maintain informa-

tion like when, why, and who has made modifications. This

history of model versions and modification information are

stored in a repository. The basic functionalities of version

control systems are: check-in (save a model into the ver-

sioned repository), check-out (get a model from the ver-

sioned repository), merge (join two models) and detect con-

flicts (identify concurrent modifications that cannot be re-

solved)[2].

Our model-based version control component is Odyssey-

VCS. This component has a client/server architecture and

offers all the requirements discussed above. It uses the EMF

reflective API to support the versioning of any UML model

element
2
. It can also execute external code trough hook

implementation.

Odyssey-VCS works at fine-grained model versioning. This

means that it is capable of identifying a new version of any

UML model element. When a model element is composed

from other model elements, if one of these elements is

changed, the composing model element also receives a new

version number. This is propagated recursively up to the

outer model element, frequently a model package.

3.5 Model Transformation
Model transformation depends on a set of mappings and

rules to create elements in a model from elements of an-

other model. There are different ways to generate a new

model using transformations [18]. Some existing ap-

proaches to model-to-model transformations are: ATL

(ATLAS Transformation Language) [11], Triple [3], Opti-

malJ [7]. UMT [16], UMLX [8], and Odyssey-MDA[1]. A

further discussion about transformation can be found in

[21].

One of the requirements for controlling model evolution is

the support for bidirectional transformations. This means

that transformations should be able to generate PSM ele-

ments from PIM elements, and PIM elements from PSM

elements. This feature is needed because different people

may be working over different models, and new elements

inserted in a PSM may have to be represented in its corre-

sponding PIM. From the approaches presented above, ATL

[11] and Odyssey-MDA [1] allow transformations in both

directions. However, ATL requires the writing of a particu-

lar transformation mapping for each direction. On the other

hand, Odyssey-MDA allows the specification of bidirec-

tional transformations in the same mapping. In addition, it

is also shipped with a tool for model marking, named Mod-

elMarker. Due to that, we adopted Odyssey-MDA as our

transformation engine component.

2 A model element is any UML element defined in its metamodel,

for example, a class, attribute, operation, component, associa-

tion, etc.

PIM RTR PSM

Odyssey-MDA

Synchronization

Engine

Hook pre-
checkin

Hook post-
checkin

Odyssey-VCS

Hook post-
checkin

Hook pre-
checkin

Odyssey-VCS

Transaction

Manager

Odyssey-VCS Client

TMR

Odyssey-MDA is capable to execute vertical and horizontal

transformations. Therefore, although this paper is focused

in vertical transformations, our approach can also be ap-

plied to control the evolution of models at the same abstrac-

tion level.

3.6 Record of Transformation
A record of transformation (RT) [18] is used to identify

source models from target models and vice-versa. This is a

very important resource to synchronize models, as it helps

to identify existing model elements that have to be updated

instead of being overwritten. Traceability links are particu-

larly important for the synchronization activity when some

relevant information is lost during the transformation [22].

In Odyssey-MEC approach, RTs are represented as a Tra-

ceability Links (TL). This is an Ecore model element that

we created to reference the source and target model

elements and the mapping that was used to generate the

target element. Traceability links are generated by our Od-

yssey-MDA component during model transformations.

Since more than one source or target model may be in-

volved in transformation, it is possible that more than one

traceability link references the same source element or tar-

get element.

3.7 Transaction Control
The synchronization and versioning of source and target

models should be performed in a transaction context. In

other words, if one of these steps fails, the whole process

has to be canceled to avoid model inconsistencies.

To solve this problem, we adopted a Transaction Manager

(TM) component that implement a two-phased transaction

commit. When a model is checked in, the Odyssey-VCS

pre-checkin hook uses TM to verify if there is any existing

transaction in progress. If not, it asks for a new transaction

and informs Odyssey-VCS that the model can be versioned.

Odyssey-VCS starts its own transaction to create the model

version. After versioning the model, Odyssey-VCS executes

the post-checkin hook. This hook initiates the transforma-

tion and synchronization process. During this activity, other

Odyssey-VCS instances may start their own transactions, as

well as RTR. If all Odyssey-VCS instances finish their

transactions successfully, TM navigates trough all Odyssey-

VCS instances asking them to confirm their transactions.

This also happens with RTR. Finally, the global transaction

is confirmed.

3.8 Element Search
The versioning process depends on finding prior element

versions. The synchronization process depends on finding

PIM and PSM elements that have a trace relationship. Due

to that, our element search occurs in two dimensions: time

(different versions) and space (different models).

UML model elements are identified in XMI files by unique

identifiers. Unfortunately, most tools do not preserve the

value of these ids when models are exported. Therefore,

this identifier cannot be used do identify model elements.

To solve this problem, Odyssey-VCS uses a unique identi-

fier as a tagged value.

The Odyssey-VCS meta-model has an element called Ver-

sion. This element represents a version of a UML model

element, and stores some versioning data, such as the ele-

ment version number. It also has references to the UML

model element it represents and references to the prior and

next versions. Therefore, there is a list of versions for each

element, which constitutes the element version history. This

version history is useful to find prior and next versions of

an element. However, due to the use of separate repositories

for PIM and PSM, elements in different models have their

own version history.

The combination of version history list and traceability

links can be seen in Figure 2. Together, these two references

make it possible to freely navigate from one version to an-

other and from an element of a model (e.g., PIM) to another

element of another model (e.g., PSM). This capability sup-

ports the versioning and synchronization processes dis-

cussed in Section 3.9.

Figure 2. Version, PIM and PSM references

3.9 Model Synchronization
Interrelated models have to be consistent with each other.

Therefore, it is necessary to synchronize them during de-

velopment and maintenance, but preserving prior modifica-

tions. The ability to automatically synchronize models

without information loss is called roundtrip engineering

[22], and the lack of this ability usually leads to legacy sys-

tems [13].

Odyssey-VCS is designed to control the evolution of inde-

pendent models. It means that this component alone is not

capable of controlling the evolution of models that have

RT
<<entity>>

Student

a1 : String

a2 : String

Version 1 Version 1 <<EJBean>>

Student

a1 : String

a2 : String

getA1() : String

getA2() : String
setA1(a1 : String)
setA2(a2 : String)

RT
<<entity>>

Student

a1 : Int
a2 : String

Version 2 Version 2 <<EJBean>>
Student

a1 : Int
a2 : String

getA1() : Int
getA2() : String

setA1(a1 : Int)
setA2(a2 : String)

Prior Next Prior Next

PIM PSM

traceability links among them. Therefore, it is necessary to

adopt a synchronization engine together with Odyssey-

VCS. This synchronization engine is triggered by Odyssey-

VCS hooks.

The synchronization engine, which is a component of Od-

yssey-MEC, depends not just on PIM and PSM version

control information, but also on existing record of trans-

formations of prior PIM and PSM versions. It also depends

on Odyssey-MDA to generate models.

When a model is checked in, Odyssey-VCS tries to create a

new version of the model. The Synchronization Engine

(SE) is executed only if there is no version conflict during

the versioning process. This avoids synchronization effort

in cases of conflicts. If there is no conflict, SE selects the

transformation mapping to be used and sends it to Odyssey-

MDA, together with the new model version that was

checked-in. Odyssey-MDA generates the target model

(TM) and the RT of each target element, and returns them

to SE. SE uses Odyssey-VCS of the target element to verify

if there is any existing version available. If no previous ver-

sion is found, SE considers the target model as a new mod-

el. In this case, SE checks in the target model using the

Odyssey-VCS repository designated to it.

If there is an existing version of the generated target model,

SE has to pre-process it in order to allow Odyssey-VCS to

match the model with its prior version. This pre-processing

starts with the recovery of versioning information. After

that, the versioning information is interwoven into the gen-

erated target model.

This pre-processing process is composed of the following

steps: (1) SE navigates trough all elements of the generated

target model; (2) Using the traceability link, SE finds the

related source model; (3) SE searches for the most recent

version that has a traceability link dependency to an ele-

ment of the target model; (4) When this element is found,

SE retrieves its version information and puts into the re-

spective generated target model element.

After the process is finished, SE checks in the model. It is

worth to notice that, at this moment, the generated target

model has all the necessary versioning information to allow

Odyssey-VCS to interpret it as a new version of a model

under version control. The generation of a new version of

the model element means that the differences between the

existing version and the checked-in version were merged. In

other words, the synchronization was performed. If some

conflicts occur during this merge process, all the operations

are canceled.

When a source element has traceability links to more than

one target element, the part of the transformation used to

generate the target element is used to identify the correct

element. This information is specified together with the

traceability link that exists between the source and target

models.

4. RELATED WORK
Gîrba et al. [10] proposes Hismo as a meta-model based

solution to control model versions. However, this approach

does not take into consideration synchronization and does

not support UML models.

Matheson et al. [14] proposed an architecture for capturing

models evolution in MDD. They suggest the use of a re-

pository centric solution that is independent from client

tools and stores model versions and their relationships in

fine granularity. XMI is proposed as the data exchange

mechanism for UML artifacts, and it uses XML and XML

Schema to specify the transformation specifications. Be-

sides the similarities with our approach, nothing was men-

tioned about the execution of model synchronization and

model versioning.

There are some other researches [6, 9, 12] that take model

evolution into consideration in some different ways, but do

not consider versioning and model synchronization, as we

do in our work.

5. CONCLUSIONS
This paper presented an approach to control the evolution

of MDA models considering the model synchronization and

versioning in a client/server architecture. Therefore, any

CASE tool that can export models using XMI format is a

potential client to Odyssey-MEC.

The way that PIM and PSM are versioned in Odyssey-MEC

eliminates the need of any special mechanism to synchro-

nize them. This synchronization is made when Odyssey-

VCS merges the model that is being checked in with its last

available version.

The client/server architecture of Odyssey-MEC makes it

possible to implement distributed MDD using the MDA

approach. The automatic model synchronization avoids the

errors that can be introduced during manual synchroniza-

tion. It also guarantees that models will always be consis-

tent.

Although this paper focused on PIM and PSM, models in

the same abstraction level may also be generated, synchro-

nized and versioned. This can be done via horizontal trans-

formation definitions during the MDD project creation.

Moreover, we were mostly focused in this paper on PIM

and PSM synchronization and versioning. Therefore, only

two abstraction levels where considered. However, the ap-

proach works with unlimited abstraction levels. In this case,

a PSM can be considered a PIM for the next abstraction

level. It is also possible to support PSM for multiple plat-

forms.

Currently, Odyssey-MDA works just with static models

(i.e., class and component models). It means that Odyssey-

MEC cannot synchronize dynamic models, such as se-

quence model. Nevertheless, Odyssey-VCS can still be used

to version control these models, but without synchroniza-

tion among them. Moreover, the current version of Odys-

sey-MDA is able to deal with just one model as input and

generates another model as output. Therefore, Odyssey-

MEC supports model evolution in a one-to-one basis.

Our next step is to evaluate the proposed approach by ap-

plying some selected cases that will take into consideration

conflict resolutions, forward and reverse transformations,

transformation mapping change, etc. The results will be

evaluated through precision and recall analysis [23], com-

paring them to the expected values.

As future work, we intend to: (1) expand our support to

CIM and source-code; (2) develop an additional tool to

help de visualization of MDA models evolution during the

project execution and system maintenance; (3) control the

evolution of transformation mappings and register in the RT

the version of the transformation mapping used during the

transformation; (4) expand our support to other UML

models, such as the behavioral models; (5) modify Odys-

sey-MDA to receive and generate more than one model;

and (6) use rules do control modifications that can be ap-

plied on interrelated models.

6. ACKNOWLEDGMENTS
Our thanks to the members of the Software Reuse Group at

COPPE/UFRJ, especially Hamilton Oliveira, Cristine Dan-

tas, Luiz Gustavo Lopes, João Gustavo Prudêncio, and

Natanael Maia, who contributed to Odyssey-VCS and Od-

yssey-MDA. We also want to thank CNPq for the financial

support.

7. REFERENCES
1. Bacelo, A., Maia, N. and Werner, C.M.L., Odyssey-MDA: A

Transformational Approach to Component Models. in Pro-

ceedings of Conference on Software Engineering and Knowl-

edge Engineering, (Boston, USA, 2007), 9-14.

2. Berczuk, S. Software Configuration Management Patterns:

Effective Teamwork, Practical Integration Addison-Wesley,

Boston, MA, USA, 2002.

3. Billig, A., Busse, S., Leicher, A. and Süb, J.G., Platform

Independent Model Transformation Based on Triple. in Pro-

ceedings of the 5th ACM/IFIP/USENIX International Con-

ference on Middleware, (Toronto, Canada, 2004), 493-511.

4. Booth, D., Hass, H., McCabe, F., Newcomer, E., Champion,

M., Ferris, C. and Orchand, D. Web Services Architecture -

W3C Working Group Note, World Wide Web Consortium

(W3C), 2005.

5. Budinsky, F., Steiberg, D., Merks, E., Ellersick, R. and

Grose, T.J. Eclipse Modeling Framework: A Developer's

Guide. Addison Wesley, 2003.

6. Chen, F., Yang, H., Qiao, B. and Chu, W.C.-C., A Formal

Model Driven Approach to Dependable Software Evolution.

in Proceedings of 30th Annual International Computer Soft-

ware and Applications Conference - Cover, (Chicago, Illi-

nois, USA, 2006), 205 - 214.

7. Compuware. OptimalJ - Model-driven Java Development

Tool, 2007.

8. Eclipse. UMLX A Graphical Transformation Language for

MDA, 2007.

9. Engels, G., Küster, J.M., Heckel, R. and Groenewegen, L.,

Towards Consistency-Preserving Model Evolution in Pro-

ceedings ICSE Workshop on Model Evolution, (Florida,

USA, 2002), 129-132.

10. Girba, T., Favre, J.-M. and Ducasse, S.e. Using Meta-Model

Transformation to Model Software Evolution. Electronic

Notes in Theoretical Computer Science, 137. 57-64.

11. Jouault, F. and Kurtev, I., Transforming Models with ATL. in

Proceedings of the Model Transformation in Practice Work-

shop at MoDELS, (Montego Bay, Jamaica, 2005), 128-138.

12. Lin, Y. and Gray, J., A Model Transformation Approach to

Automatic Model Construction and Evolution. in Proceed-

ings of the 20th IEEE/ACM International Conference on

Automated Software Engineering, (Long Beach, CA, USA,

2005), ACM, 448-451.

13. Maciaszek, L.A., Roundtrip Architectural Modeling. in Pro-

ceedings of the 2nd Asia-Pacifc Conference on Conceptual

Modeling, (Newscastle, Australia, 2005), Australian Com-

puter Society, Inc. , 17-23.

14. Matheson, D., France, R., Bieman, J., Alexander, R., DeWitt,

J. and McEachen, N., Managed Evolution of a Model Driven

Development Approach to Software-based Solutions. in

Workshop on Best Practices for Model Driven Development,

(Vancouver, Canada, 2004).

15. Murta, L.G.P., Dantas, H.L.R., Lopes, L.G.B. and Werner,

C.M.L. Odyssey-SCM: An Integrated Software Configura-

tion Management Infrastructure for UML Models. Science of

Computer Programming, 65 (3). 249-274.

16. Oldevik, J. UML Model Transformation Tool - Overview and

User Guide Documentation, 2004.

17. Oliveira, H., Murta, L. and Werner, C.M.L., Odyssey-VCS: a

Flexible Version Control System for UML Model Elements.

in International Workshop on Software Configuration Man-

agement (SCM-12) (Lisbon, Portugal, 2005), 1-16.

18. OMG. MDA Guide Version 1.0.1, Object Management

Group, 2003.

19. OMG. Unified Modeling Language (UML) Infrastructure

Specification. Version 2.0, Object Management Group, 2006.

20. OMG. XML Metadata Interchange (XMI) Specification.

Version 2.0, Object Management Group, 2005.

21. Sendall, S. and Kozaczynski, W. Model Transformation - the

Heart and Soul of Model-Driven Development. IEEE Soft-

ware, 20 (5). 42-45.

22. Sendall, S. and Küster, J., Taming Model Round-Trip Engi-

neering. in Workshop on Best Practices for Model-Driven

Software Development, (Vancouver, Canada, 2004).

23. Yates, R.B. and Neto, B.R. Modern Information Retrieval.

ACM press, 1999.

