
731

Runtime Monitoring and Auditing

of Self-Adaptive Systems

Daniel H. Carmo
*
, Sergio T. Carvalho

*+
, Leonardo G. P. Murta

*
, Orlando Loques

*

*
Instituto de Computação, Universidade Federal Fluminense (UFF), Niterói, Brazil
+
Instituto de Informática, Universidade Federal de Goiás (UFG), Goiânia, Brazil

{dheraclio, scarvalho, leomurta, loques}@ic.uff.br

Abstract— Self-Adaptive Systems are target of frequent research

regarding different aspects. However, they still present several

challenges related to assurance, dependability, verification, and

validation. Adaptations can be related to a set of concerns (i.e.,

why, what, when, where, who, and how), which are evaluated

during, operation and post operation phases. We propose the

application of configuration management techniques to provide

means for monitoring and auditing Self-Adaptive Systems. We

introduce a tool named CM@RT that registers how the system

architecture configuration evolves over time and provides

different visualizations to track such evolution. For evaluating

our approach, some Self-Adaptive Systems scenarios were

tackled with the help of CM@RT. The results show that our

approach is capable of providing means to perform monitoring

and auditing with valuable benefits to the selected Self-Adaptive

scenarios.

Keywords- Self-Adaptive Systems; Configuration Management;

Monitoring; Auditing; Product Lines

I. INTRODUCTION

Self-Adaptive Systems (SAS) adapt their behaviour in

reaction to changes in the runtime context [1]. Today, there is

an increasing demand for SAS [2], even for safety-critical

applications [3], since SAS are capable of operating in highly

dynamic environments [3]. However, considering that SAS are

conceived to autonomously react to changes in the runtime

context, researches on dependability [4], verification and

validation [3], quality [5], among others [1], [2], [6] are

crucial, especially for safety-critical applications.

SAS may perform different types of adaptations in

response to changes in the runtime context. These adaptation

types are based on techniques ranging from parameterization

to architecture reconfiguration [2]. The later allows deeper

adaptations because parts of the system (i.e., components) can

be added, removed, replaced, or reconnected with the

remaining parts, resulting in new architecture configurations

(AC) [2]. Investigations on AC level adaptation have provided

significant results for SAS [7], [8], [9]. For instance, when

considering safety-critical applications, the use of Dynamic

Software Product Lines (DSPL) techniques leverages

dependability by allowing software architects to define, in a

preplanned manner, possible AC and transitions among them

[10], [11], [12], [13].

However, tracking the AC evolution of SAS, even when

adopting DSPL techniques, is a complex task [14]. SAS

adaptations can be described in terms of six basic concerns

(5W+1H) [2]: where, when, what, why, who, and how.

Identifying and closely following such concerns is expected

during operation phase [2]. In addition to this phase, safety-

critical applications also require post-operation analysis, for

example, to assign responsibilities in the context of a given

health care system failure [6]. In this case, software auditing is

essential to verify compliance with design specifications.

Therefore, these tasks require specific support for evaluating

5W+1H concerns during two phases:

 Operation phase. This could help to answer questions

such as “why the system did lots of adaptations in the

last week?”

 Post-operation phase. This could help answer

questions such as “which adaptation patterns led to a

system failure?”

A natural way to support such tasks is adopting

Configuration Management (CM) techniques during runtime,

helping to track the architectural evolution in terms of the

5W+1H concerns. Evolution of AC in SAS and its relation to

CM has been explored before. First, van der Hoek [15] made

initial efforts to track runtime AC evolution via architecture

description languages. After, van der Hoek et al. [16] extended

the previous work and applied CM to support DSPL anytime

variability. Latter, Georgas et al. [4], [17] leveraged

dependability by recording adaptations and providing

architecture recovery operations and visualization features

over SAS historic behavior. However, such researches do not

consider ways for describing adaptations in terms of the main

SAS 5W+1H concerns [2], concentrating only on the

architectural modifications themselves and ignoring the

motivation behind them. This lack of information may

jeopardize the comprehension of SAS evolution.

This paper proposes the application of CM techniques to

provide support for evaluating 5W+1H concerns with

monitoring and auditing purposes. To do so, we designed a

CM system to work at runtime, named CM@RT. Our

approach comprises two complementary phases: information

acquisition and information analysis. First, during information

acquisition, CM@RT registers in a repository adaptation

related aspects, e.g., runtime contexts and AC achieved. Then,

during information analysis, CM@RT supports the

visualization of the AC evolution via different perspectives,

described in Section III. With this tool, users are able to

closely follow the SAS evolution during operation and post-

operation.

732

To evaluate the benefits of CM@RT, some scenarios

associated to monitoring and auditing tasks were tackled. With

the use of our tool, we were able to collect enough information

to answer the 5W+1H concerns for these relevant scenarios.

The remaining sections of this paper are organized as

follows. Section II gives more details about SAS and

highlights the importance of monitoring and auditing for SAS.

Section III introduces the CM@RT approach. Section IV

provides some implementation details of CM@RT. Section V

presents how to perform monitoring and auditing analyses

with CM@RT. Section VI describes some related work.

Finally, Section VII presents final considerations and outlines

some future work.

II. SELF-ADAPTIVE SYSTEMS

SAS usually adopt the MAPE-K adaptation loop [2], [5] to

manage their behaviour. This adaptation loop consists of four

phases [18]: (1) monitoring the external environment in which

the system is executing, (2) analysing the context attributes of

the environment, (3) planning for a possible adaptation to react

from changes in the environment, and (4) enforcing the

adaptation in the system. The adaptation loop usually counts

on some kind of adaptation knowledge that supports each of

the four previously mentioned adaptation phases.

Researchers have explored different techniques to

implement adaptation loops. Among them, we can cite model-

driven [10], [13], [19] and contract-based (also called strategy

or policy) [2], [12], [20] techniques. However, despite of the

differences in adaptation techniques, it is possible to describe

and further comprehend the adaptation decisions through the

evaluation of the 5W+1H concerns [2]:

 Where: questions over adaptation location, e.g.,

which layer or components should be adapted?

 When: questions over temporal aspects, e.g., when to

adapt or how often?

 What: questions over adaptation strategies, e.g.,

should we reconfigure the AC or substitute a

component?

 Why: questions over reasons to adapt, e.g., which is

the adaptation goal?

 Who: questions over sources of adaptation, e.g., was

it a human-driven or context-based adaptation?

 How: questions over actions performed in the

adaptation, e.g., in which order the changes should

take place?

Controlling software evolution is one of the main concerns

of CM. It traditionally works at development time and has

files as first class artifacts [21]. In an usual CM setting, a

version control system is responsible for registering detailed

information about modifications in different artifacts, e.g.,

source code [22] and architecture configuration [15]. On the

other hand, an issue tracking system is responsible for

registering change requests, which identify the issue context,

affected artifacts, and required corrections. In addition,

integration between version control and issue tracking has

demonstrated as an effective way to clarify 5W+1H concerns

[23].

The expected operation of a SAS consists on performing

adaptations if and only if they are necessary. However, in

some situations the SAS may not perform a prescribed

adaptation (i.e., false negative) or perform an unnecessary one

(i.e., false positive). The evaluation of the internal conditions

would help to identify the reasons of false positive (FP) or

false negative (FN) adaptations. In addition, replicating the

conditions that lead to them is also complex. Appropriate

development and test processes would help to identify such

problems at development time, before they actually happen.

However, it is very difficult to guarantee that all problems are

caught during development. This motivates the use of a

monitoring mechanism at runtime. Finally, an auditing

mechanism could help to identify after-the-fact malfunctions.

For example, wrong adaptations (FP or FN), which were not

caught at development time or at runtime. This can be useful

considering highly dynamic current pervasive computing

scenarios.

III. THE CM@RT APPROACH

The CM@RT approach performs runtime CM over SAS in

order to provide means for evaluating 5W+1H concerns during

monitoring and auditing activities. These activities are

performed through the integration between the CM@RT-

Repository and the CM@RT-Visualizer modules. Technology

specific components integrate CM@RT to the SAS

infrastructure. Thus, allowing both on-line and off-line

analysis. The following subsections present how information

is acquired by CM@RT-Repository, and subsequently

analyzed through CM@RT-Visualizer.

A. Information Acquisition

The runtime information gathering is performed by the

before mentioned integration component. This component is

responsible for mapping the application specific SAS entities

into the CM@RT-Repository metamodel.

After importing the SAS into CM@RT-Repository, the

runtime information captured is registered in the metamodel

shown in Figure 1. Its relationship to the 5W+1H concerns is

described in the following.

Figure 1 CM@RT metamodel

To answer where the adaptation should be performed,

CM@RT tracks Architecture Configurations materialized

733

during runtime. This tracking enables comparing AC to reveal

the differences between them. The relationship between the

AC before and after adaptation is represented by the

Transition Record entity. It also includes references to the

Issue entity, which is described further in following

paragraphs.

The answer to when to adapt depends on when the demand

arose and when it was detected. Since SAS are context-aware,

the demand appears first on the runtime context, represented

by the Runtime Context entity. The moment of the demand

detection is the time of the Issue entity creation. However, not

every runtime context results in new demands. In addition,

when to adapt involves deciding whether to adapt or not, so

demands may go unattended. The CM@RT-Repository stores

Runtime Contexts and Issues even if they do not result in AC

transitions.

The answer to who detected the issue can be found in the

attribute creator of the Issue entity, and it may consist on the

SAS itself or on a human. SAS issues are generally concerned

with self-* properties [21], e.g., self-healing, or user needs,

e.g., controlling room temperature. On the other hand, human-

driven issues may have different concerns, e.g., corrective

maintenance during operation, testing components during

development, or evaluating system behaviour after

adaptations. In any case, they relate to the current runtime

context and determine modifications in the AC.

The answer to why the SAS adapts requires evaluation

over the Runtime Context and the Issue associated to a

transition between AC. The runtime context shows detailed

information over SAS runtime environment, allowing

engineers to reason over them. Issues deal with several

concerns (discussed in the previous paragraph), which can be

registered in the attribute description for future analysis. Thus,

Runtime Contexts and the corresponding Issues complement

each other for answering this question.

The answer to how the adaptation occurred is also

associated with the Issue through adaptive actions it registers.

However, these actions may consist on high-level

modifications over the current AC, which leave aside low-

level dependencies among components and required services.

For example, contracts are concerned with DSPL composition

rules only [24], thus not required to address version conflicts

of shared libraries among components. It is necessary to

evaluate the differences between AC before and after the

adaptations to realize the full extent of how the SAS was

adapted. This could reveal if the SAS low-level dependency

solution harmed contract results.

B. Information Analysis

The CM@RT-Visualizer is intended to work connected to

CM@RT-Repository, retrieving information from its

repository and exposing update events. Through a combination

of views, the application provides analysis features that can be

applied during monitoring and auditing.

Monitoring support allows software architects and

engineers to evaluate system behavior during runtime. For

example, they may evaluate transitions among AC online,

since the CM@RT-Visualizer updates its representations just

after adaptations are recorded in CM@RT-Repository. It is

also possible to evaluate the runtime contexts and issues as

soon as they are recorded.

Auditing support is only viable because all information is

recorded in a repository, allowing after-the-fact analysis. It

includes, among other features, a retrospective view. It is able

to graphically replay the transitions performed at runtime in

terms of AC diffs, runtime contexts diffs, and associated

issues (see Section IV.D for more details).

IV. CM@RT PROTOTYPE

With the aim of evaluating our approach, we develop four

prototypes. The first is a SAS framework, which follows the

MAPE-K principle. The second is a version of the SCIADS
1

[12], [24], [26] compliant to the SAS framework. The third is

the CM@RT-Repository module and the fourth is the

CM@RT-Visualizer module.

The main adaptation technology employed in our

prototypes is OSGi
2
. OSGi leverages the construction of

dynamic systems as sets of components, which can bind to

services dynamically and automatically. The following

subsections describe the developed prototypes.

A. The SAS Framework

The SAS Framework was implemented as independent

OSGi components. The main component is the SelfAdapter. It

supplies the basis of the framework, defining service

interfaces, and model classes, and providing utility classes for

others SAS Framework components. Other OSGi components

(Knowledge, Monitor, Analyzer, Planner, and Adapter)

implement specific services following the interfaces required

by the SelfAdapter component. For example, the Monitor

component implements the monitoring service of MAPE-K

defined by the Monitor interface.

B. The SCIADS Version Compliant to the SAS Framework

SCIADS is a safety-critical DSPL-based SAS. Its AC is

reconfigured according to adaptation actions determined by

contracts and DSPL composition rules [12], [24]. The

contracts use runtime context variables to determine high-level

modifications in current AC, e.g., insertion or removal of

components. In addition, SCIADS AC considers its patient

specifics needs and residence characteristics. The combination

of these factors results in a great number of possible AC and

directly jeopardizes the predictability of system states [13].

C. The CM@RT-Repository Module

The CM@RT-Repository information acquisition module

is the main element of our approach, as it provides services to

all the other elements. The CM@RT-Repository provides a

single API, which follows the Facade pattern, hiding internal

services and their relationship.

There are two service groups: repository and diffing.

Repository services include SAS registration, information

1
 SCIADS is a home health care system developed at UFF

(http://www.tempo.uff.br/sciads/).
2
 Official site: http://www.osgi.org

734

storage, and querying over metamodel elements such as

runtime context, issues, AC, and theirs transitions (see Figure

1). The diffing service supports runtime context and AC

comparison.

D. The CM@RT-Visualizer Module

The CM@RT-Visualizer module depends on services

provided by the CM@RT-Repository module. For example,

the query services of CM@RT-Repository are used to

populate the views of CM@RT-Visualizer.

After selecting a SAS among those registered in the

repository, the information available for analysis is shown in

the Repository view. It is organized in four groups: Runtime

Contexts, Issues, Transitions, and Architecture Configurations.

These groups can be seen in Figure 2, on the left hand side.

Selected or general information can be analyzed through seven

different views during monitoring or auditing activities, which

are described in the following.

Figure 2 History view

The History view presents the SAS evolution as a whole

through a graph. Figure 2 shows an example of runtime

evolution history, in which SCIADS performed four different

transitions. The nodes represent AC and the edges represent

the transitions.

The Architecture Configuration view presents the SAS

AC also through a graph notation (see Figure 3). In this case,

the nodes represent components and are identified by name

and version, while edges represent the AC topology. Figure 3

also shows metrics for assessing the quality of the AC [27].

The metrics are based in component provided service

utilization (PSU) and required service utilization (RSU). The

metrics are Average PSU, Average RSU, Compound PSU, and

Compound RSU.

The Architecture Configuration Diff view (see Figure 4)

shows the differences between two AC selected from the

Repository view through check boxes. It uses the same graph

representation used in Architecture Configuration view,

annotated with color codes, indicating added (green), removed

(red), replaced (blue), and unchanged components (gray). In

addition, there is a textual description identifying the

differences found between the selected AC. This feature also

uses the before mentioned color codes to favor visual

identification.

Figure 3 Architecture Configuration view

The Runtime Context view represents the context

information monitored by the SAS in the form of a grid. This

grid contains the date of last update, the source, the attribute

name, and the collected value. Similarly, the Runtime

Context Diff view (see Figure 5) shows the differences

between two runtime contexts selected from the Repository

view. The diffing is performed considering each attribute and

its value, but ignoring dates and sources, as these data are

expected to always change. The Status column shows the

results using the same designation and color code of the

Architecture Configuration Diff view.

Figure 4 Architecture Configuration Diff view

Figure 5 Runtime Context Diff view

The Issue view shows details of the registered issues.

Figure 6 shows the inclusion date in the repository, the

demand description, the actions required to modify the AC,

and a textual description of the effects over the AC before the

adaptation. It also has buttons to show the runtime context

(Runtime Context view) and the difference between the AC

before and after the adaptation (Architecture Configuration

Diff view).

735

Finally, the Retrospective view uses the transition records

from CM@RT-Repository to present an animation of the

adaptations performed by the SAS system, replaying its

operation for a chosen period. It is a composition of three

views: Architecture Configuration Diff view (see Figure 4),

Runtime Context Diff view (see Figure 5), and Issue view

(see Figure 6).

Figure 6 Issue view

V. MONITORING AND AUDITING ANALYSES WITH CM@RT

This section describes how CM@RT can help performing

monitoring and auditing analyses under three scenarios. These

scenarios use SCIADS as a concrete example. In this section,

we assume that all prototypes are active during runtime in the

OSGi platform. Monitoring and auditing performed using

CM@RT-Visualizer features occurs as follows.

A. False Positive and False Negative Adaptations Detection

In SCIADS, identifying FP or FN adaptations require the

evaluation of several contracts, considering their internal

conditions. In Figure 5, the CM@RT-Visualizer shows

examples of these internal conditions in the first 2 rows, along

with corresponding values. The internal conditions were added

to runtime context to enable their evaluation based in value

differences between two runtime contexts.

To identify a FP the user can also check the registered

issues. The Issue view reveals which demands the SAS found

on a particular runtime context in the description field. To

identify FN, it is necessary to go through the registered

runtime contexts. The Runtime Context Diff view helps to

identify significant changes between runtime contexts,

necessary to locate situations where adaptations should have

occurred but did not.

B. Adaptation Cycles Detection

Another possible monitoring scenario consists on

evaluating the SCIADS adaptation rate in a patient’s home.

Besides adopting massive tests at development time, each

patient home has its own requirements and features.

Sometimes these features cannot be fully predicted, thus being

a source of uncertainty to the SAS [28]

Monitoring new AC transitions thought CM@RT-

Visualizer reveals the adaptation rate. Furthermore, it is

possible to monitor the rate of runtime context updates and

issues found. Monitoring runtime context and issues could

reveal anomalies during operation which were missed during

development. For example, the temperature thresholds

configured according to the development site may be

inadequate to the operation site, leading patient discomfort.

C. After-the-fact Adaptations Tracking

In SCIADS, if the patient is under dangerous health

conditions, adaptations are severely restricted. During auditing

of such behaviour, the manual analysis of textual system

runtime logs would be counterproductive and error prone. The

existence of a tool capable of representing historical

information with semantic driven visualizations, make the

auditing process more efficient and trustable if compared to

textual analysis.

The Retrospective view represents the progression of the

SAS adaptations, enabling their evaluation by specialists. The

view shows at the same time what changed, why it did, when

it happened, and who requested it. In addition, the progression

of the runtime context may reveal the effect of the adaptations

in the SAS environment.

VI. RELATED WORK

Few works provide runtime CM infrastructure to manage

AC evolution. Van der Hoek et al. [15], show that the AC of

dynamic system evolve as well as source code, and were the

first to propose the use of CM for managing this evolution.

They developed an integrated architecture-driven environment

called Mae. Mae provides features such as architecture

evolution control, runtime adaptation patch generation, and

product variant selection. In [16], van der Hoek continues to

explore architecture evolution control for any time variability

on DSPL. The approach comprises two applications: Ménage

for evolution control and SelectorDriver for evolution

handling. Ménage is part of the Mae environment, but focus

only on the development phase. Our approach is

complementary to these in the sense that we propose an

infrastructure for tracking the architectural evolution during

operation and post-operation phases, while their approach

focuses on the development phase.

Georgas et al. [4] use runtime CM to control architectural

evolution and to leverage dependability on SAS through the

use of Architectural Runtime Configuration Management

(ARCM). ARCM is integrated to Eclipse IDE through a plugin

[4], and comes with three main features: runtime architectural

evolution control, graph-based visualization of architectural

evolution, and architectural recovery facilities. In [17],

Georgas et al. describe the use of ARCM to provide visibility

and understandability over SAS runtime behavior and means

for human intervention over the adaptation process. Despite

the fact that it has some similarities with our approach, it is

limited to AC evolution. Our approach tracks several other

architectural evolution concerns, such as runtime context and

related issue, and encompasses operation and post-operation

phases.

VII. CONCLUSION

CM@RT represents our initial efforts on supplying CM at

Runtime to provide a monitoring and auditing infrastructure

for SAS, with special attention to DSPL. CM@RT-Repository

736

provides tracking functionalities over AC evolution and

related information. Complementing the core application, we

provide a repository visualization tool that supplies

consolidated information and mechanisms for monitoring and

auditing. Thus, CM@RT enables short, medium, and long

time analysis over SAS behavior. In addition, since the

CM@RT was designed to be deployed with the target SAS, it

runs on-line in production and development environment.

We also demonstrated how to perform monitoring and

auditing with CM@RT. This provides some initial evidences

that CM@RT is capable of providing behavior information for

monitoring and trace information for auditing. In addition, we

provide some SPL metrics for quality assessment and analysis

support (see Figure 3). In the future, we intend to perform

user-centered experiments to raise more evidence of its

benefits.

We believe the application of data mining on the repository

would reveal the existence of significant adaptation patterns.

For example, policies conflicts, components interoperability

conflicts, or singular situations at runtime environment could

be detected. With these patterns in hand, it would be possible

to enhance the effectiveness of the adaptation contracts by

treating previous patterns causes and, consequently, avoiding

unstable architecture configurations. In addition, there are

plans to use this information for developing automated

analysis features.

ACKNOWLEDGMENT

The authors would like to thank CAPES, CNPq, and

FAPERJ for their financial support.

REFERENCES

[1] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, and others, “Software
engineering for self-adaptive systems: A research roadmap,” Software
Engineering for Self-Adaptive Systems, pp. 1–26, 2009.

[2] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.
1–42, May 2009.

[3] G. Tamura, N. M. Villegas, H. A. Müller, J. P. Sousa, B. Becker, M.
Pezzè, G. Karsai, S. Mankovskii, W. Schäfer, L. Tahvildari, and Wong,
Kenny, “Towards practical runtime verification and validation of self-
adaptive software systems,” in in Software Engineering for Self-Adaptive
Systems 2, vol. 7475, Springer, 2013, pp. 108–132.

[4] J. C. Georgas, A. Van Der Hoek, and R. N. Taylor, “Architectural
runtime configuration management in support of dependable self-
adaptive software,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–6,
Maio 2005.

[5] N. M. Villegas, H. A. Müller, G. Tamura, L. Duchien, and R. Casallas,
“A framework for evaluating quality-driven self-adaptive software
systems,” in Proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, Waikiki,
Honolulu, HI, USA, 2011, pp. 80–89.

[6] O. Loques and A. Sztajnberg, “Adaptation issues in software
architectures of remote health care systems,” in Proceedings of the 2010
ICSE Workshop on Software Engineering in Health Care, 2010, pp. 24–
28.

[7] D. Garlan, B. Schmerl, and S. W. Cheng, “Software architecture-based
self-adaptation,” In Autonomic computing and networking, no. Springer,
pp. 31–55, 2009.

[8] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G. Johnson, N.
Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An
architecture-based approach to self-adaptive software,” Intelligent
Systems and Their Applications, IEEE, vol. 14, no. 3, pp. 54–62, 1999.

[9] B. Hayes-Roth, “An architecture for adaptive intelligent systems,”
Artificial Intelligence: Special Issue on Agents and Interactivity, vol. 72,
pp. 329–365, 1995.

[10] N. Bencomo, P. Sawyer, G. Blair, and P. Grace, “Dynamically adaptive
systems are product lines too: Using model-driven techniques to capture
dynamic variability of adaptive systems,” in 2nd International Workshop
on Dynamic Software Product Lines, Limerick, Ireland, 2008, vol. 2, pp.
23–32.

[11] T. Dinkelaker, R. Mitschke, K. Fetzer, and M. Mezini, “A Dynamic
Software Product Line Approach Using Aspect Models at Runtime,” 5th
Domain-Specific Aspect Languages Workshop, Mar. 2010.

[12] S. T. Carvalho, O. Loques, and L. Murta, “Dynamic Variability
Management in Product Lines: An Approach Based on Architectural
Contracts,” presented at the IV Brazilian Symposium on Software
Components, Architectures and Reuse, Bahia, Brazil, 2010, pp. 61–69.

[13] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, and A. Solberg,
“Models@ Run.time to Support Dynamic Adaptation,” IEEE Computer,
vol. 42, no. 10, pp. 44–51, Oct-2009.

[14] N. López, R. Casallas, and A. Van Der Hoek, “Issues in mapping
change-based product line architectures to configuration management
systems,” in Proceedings of the 13th International Software Product
Line Conference, 2009, pp. 21–30.

[15] A. Van Der Hoek, M. Mikic-Rakic, R. Roshandel, and N. Medvidovic,
“Taming Architectural Evolution,” in ACM SIGSOFT Software
Engineering Notes, 2001, vol. 26, pp. 1–10.

[16] A. Van Der Hoek, “Design-Time Product Line Architectures for Any-
Time Variability,” Science of Computer Programming, vol. 53, no. 3, pp.
285–304, 2004.

[17] J. C. Georgas, A. Van Der Hoek, and R. N. Taylor, “Using Architectural
Models to Manage and Visualize Runtime Adaptation,” IEEE Computer,
vol. 42, no. 10, pp. 52–60, 2009.

[18] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[19] G. Blair, N. Bencomo, and R. B. France, “Models@run.time,” IEEE
Computer, vol. 42, no. 10, pp. 22–27, 2009.

[20] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable
infrastructure,” IEEE Computer, vol. 37, no. 10, pp. 46–54, 2004.

[21] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of
Information Technology,” International Business Machines Corporation,
278606109, 2001.

[22] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, Version
Control with Subversion, 2nd ed. Sebastpol, CA, USA: O’Reilly Media,
2008.

[23] C. R. Dantas, L. G. P. Murta, and C. M. L. Werner, “Mining Change
Traces from Versioned UML Repositories,” in Brazilian Symposium on
Software Engineering (SBES), João Pessoa, Brazil, 2007, pp. 236–252.

[24] S. T. Carvalho, L. Murta, and O. Loques, “Variabilities as First-Class
Elements in Product Line Architectures of Homecare Systems,” in 4th
International Workshop on Software Engineering in Health Care,
Zurich, Switzerland, 2012, pp. 33–39.

[25] K. Suzaki, T. Yagi, K. Iijima, N. A. Quynh, C. Artho, and Y. Watanebe,
“Moving from logical sharing of guest OS to physical sharing of
deduplication on virtual machine,” in Proc. 5th USENIX Workshop on
Hot Topics in Security (HotSec 2010), USENIX, Washington DC, USA,
2010.

[26] S. T. Carvalho, A. Copetti, and O. Loques, “Ubiquitous Computing
System in Home Health Care,” Journal of Health Informatics, vol. 3, no.
2, pp. 51–57, 2011.

[27] A. Van Der Hoek, E. Dincel, and N. Medvidovic, “Using service
utilization metrics to assess the structure of product line architectures,” in
Software Metrics Symposium, 2003. Proceedings. Ninth International,
2003, pp. 298–308.

[28] N. Esfahani and S. Malek, “Uncertainty in Self-Adaptive Software
Systems,” in in Software Engineering for Self-Adaptive Systems 2, vol.
7475, Springer, 2012, pp. 214–238.

