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Abstract— Self-Adaptive Systems are target of frequent research 

regarding different aspects. However, they still present several 

challenges related to assurance, dependability, verification, and 

validation. Adaptations can be related to a set of concerns (i.e., 

why, what, when, where, who, and how), which are evaluated 

during, operation and post operation phases. We propose the 

application of configuration management techniques to provide 

means for monitoring and auditing Self-Adaptive Systems. We 

introduce a tool named CM@RT that registers how the system 

architecture configuration evolves over time and provides 

different visualizations to track such evolution. For evaluating 

our approach, some Self-Adaptive Systems scenarios were 

tackled with the help of CM@RT. The results show that our 

approach is capable of providing means to perform monitoring 

and auditing with valuable benefits to the selected Self-Adaptive 

scenarios. 

Keywords- Self-Adaptive Systems; Configuration Management; 

Monitoring; Auditing; Product Lines 

I.  INTRODUCTION 

Self-Adaptive Systems (SAS) adapt their behaviour in 

reaction to changes in the runtime context [1]. Today, there is 

an increasing demand for SAS [2], even for safety-critical 

applications [3], since SAS are capable of operating in highly 

dynamic environments [3]. However, considering that SAS are 

conceived to autonomously react to changes in the runtime 

context, researches on dependability [4], verification and 

validation [3], quality [5], among others [1], [2], [6] are 

crucial, especially for safety-critical applications. 

SAS may perform different types of adaptations in 

response to changes in the runtime context. These adaptation 

types are based on techniques ranging from parameterization 

to architecture reconfiguration [2]. The later allows deeper 

adaptations because parts of the system (i.e., components) can 

be added, removed, replaced, or reconnected with the 

remaining parts, resulting in new architecture configurations 

(AC) [2]. Investigations on AC level adaptation have provided 

significant results for SAS [7], [8], [9]. For instance, when 

considering safety-critical applications, the use of Dynamic 

Software Product Lines (DSPL) techniques leverages 

dependability by allowing software architects to define, in a 

preplanned manner, possible AC and transitions among them 

[10], [11], [12], [13]. 

However, tracking the AC evolution of SAS, even when 

adopting DSPL techniques, is a complex task [14]. SAS 

adaptations can be described in terms of six basic concerns 

(5W+1H) [2]: where, when, what, why, who, and how. 

Identifying and closely following such concerns is expected 

during operation phase [2]. In addition to this phase, safety-

critical applications also require post-operation analysis, for 

example, to assign responsibilities in the context of a given 

health care system failure [6]. In this case, software auditing is 

essential to verify compliance with design specifications. 

Therefore, these tasks require specific support for evaluating 

5W+1H concerns during two phases:  

 Operation phase. This could help to answer questions 

such as “why the system did lots of adaptations in the 

last week?” 

 Post-operation phase. This could help answer 

questions such as “which adaptation patterns led to a 

system failure?” 

A natural way to support such tasks is adopting 

Configuration Management (CM) techniques during runtime, 

helping to track the architectural evolution in terms of the 

5W+1H concerns. Evolution of AC in SAS and its relation to 

CM has been explored before. First, van der Hoek [15] made 

initial efforts to track runtime AC evolution via architecture 

description languages. After, van der Hoek et al. [16] extended 

the previous work and applied CM to support DSPL anytime 

variability. Latter, Georgas et al. [4], [17] leveraged 

dependability by recording adaptations and providing 

architecture recovery operations and visualization features 

over SAS historic behavior. However, such researches do not 

consider ways for describing adaptations in terms of the main 

SAS 5W+1H concerns [2], concentrating only on the 

architectural modifications themselves and ignoring the 

motivation behind them. This lack of information may 

jeopardize the comprehension of SAS evolution. 

This paper proposes the application of CM techniques to 

provide support for evaluating 5W+1H concerns with 

monitoring and auditing purposes. To do so, we designed a 

CM system to work at runtime, named CM@RT. Our 

approach comprises two complementary phases: information 

acquisition and information analysis. First, during information 

acquisition, CM@RT registers in a repository adaptation 

related aspects, e.g., runtime contexts and AC achieved. Then, 

during information analysis, CM@RT supports the 

visualization of the AC evolution via different perspectives, 

described in Section III. With this tool, users are able to 

closely follow the SAS evolution during operation and post-

operation. 
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To evaluate the benefits of CM@RT, some scenarios 

associated to monitoring and auditing tasks were tackled. With 

the use of our tool, we were able to collect enough information 

to answer the 5W+1H concerns for these relevant scenarios.  

The remaining sections of this paper are organized as 

follows. Section II gives more details about SAS and 

highlights the importance of monitoring and auditing for SAS. 

Section III introduces the CM@RT approach. Section IV 

provides some implementation details of CM@RT. Section V 

presents how to perform monitoring and auditing analyses 

with CM@RT. Section VI describes some related work. 

Finally, Section VII presents final considerations and outlines 

some future work. 

II. SELF-ADAPTIVE SYSTEMS 

SAS usually adopt the MAPE-K adaptation loop [2], [5] to 

manage their behaviour. This adaptation loop consists of four 

phases [18]: (1) monitoring the external environment in which 

the system is executing, (2) analysing the context attributes of 

the environment, (3) planning for a possible adaptation to react 

from changes in the environment, and (4) enforcing the 

adaptation in the system. The adaptation loop usually counts 

on some kind of adaptation knowledge that supports each of 

the four previously mentioned adaptation phases. 

Researchers have explored different techniques to 

implement adaptation loops. Among them, we can cite model-

driven [10], [13], [19] and contract-based (also called strategy 

or policy) [2], [12], [20] techniques. However, despite of the 

differences in adaptation techniques, it is possible to describe 

and further comprehend the adaptation decisions through the 

evaluation of the 5W+1H concerns [2]:  

 Where: questions over adaptation location, e.g., 

which layer or components should be adapted? 

 When: questions over temporal aspects, e.g., when to 

adapt or how often? 

 What: questions over adaptation strategies, e.g., 

should we reconfigure the AC or substitute a 

component? 

 Why: questions over reasons to adapt, e.g., which is 

the adaptation goal? 

 Who: questions over sources of adaptation, e.g., was 

it a human-driven or context-based adaptation? 

 How: questions over actions performed in the 

adaptation, e.g., in which order the changes should 

take place? 

Controlling software evolution is one of the main concerns 

of CM. It traditionally works at development time and has 

files as first class artifacts [21]. In an usual CM setting, a 

version control system is responsible for registering detailed 

information about modifications in different artifacts, e.g., 

source code [22] and architecture configuration [15]. On the 

other hand, an issue tracking system is responsible for 

registering change requests, which identify the issue context, 

affected artifacts, and required corrections. In addition, 

integration between version control and issue tracking has 

demonstrated as an effective way to clarify 5W+1H concerns 

[23]. 

The expected operation of a SAS consists on performing 

adaptations if and only if they are necessary. However, in 

some situations the SAS may not perform a prescribed 

adaptation (i.e., false negative) or perform an unnecessary one 

(i.e., false positive). The evaluation of the internal conditions 

would help to identify the reasons of false positive (FP) or 

false negative (FN) adaptations. In addition, replicating the 

conditions that lead to them is also complex. Appropriate 

development and test processes would help to identify such 

problems at development time, before they actually happen. 

However, it is very difficult to guarantee that all problems are 

caught during development. This motivates the use of a 

monitoring mechanism at runtime. Finally, an auditing 

mechanism could help to identify after-the-fact malfunctions. 

For example, wrong adaptations (FP or FN), which were not 

caught at development time or at runtime. This can be useful 

considering highly dynamic current pervasive computing 

scenarios. 

III. THE CM@RT APPROACH 

The CM@RT approach performs runtime CM over SAS in 

order to provide means for evaluating 5W+1H concerns during 

monitoring and auditing activities. These activities are 

performed through the integration between the CM@RT-

Repository and the CM@RT-Visualizer modules. Technology 

specific components integrate CM@RT to the SAS 

infrastructure. Thus, allowing both on-line and off-line 

analysis. The following subsections present how information 

is acquired by CM@RT-Repository, and subsequently 

analyzed through CM@RT-Visualizer.  

A. Information Acquisition 

The runtime information gathering is performed by the 

before mentioned integration component. This component is 

responsible for mapping the application specific SAS entities 

into the CM@RT-Repository metamodel. 

After importing the SAS into CM@RT-Repository, the 

runtime information captured is registered in the metamodel 

shown in Figure 1. Its relationship to the 5W+1H concerns is 

described in the following. 

 

Figure 1 CM@RT metamodel 

To answer where the adaptation should be performed, 

CM@RT tracks Architecture Configurations materialized 
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during runtime. This tracking enables comparing AC to reveal 

the differences between them. The relationship between the 

AC before and after adaptation is represented by the 

Transition Record entity. It also includes references to the 

Issue entity, which is described further in following 

paragraphs. 

The answer to when to adapt depends on when the demand 

arose and when it was detected. Since SAS are context-aware, 

the demand appears first on the runtime context, represented 

by the Runtime Context entity. The moment of the demand 

detection is the time of the Issue entity creation. However, not 

every runtime context results in new demands. In addition, 

when to adapt involves deciding whether to adapt or not, so 

demands may go unattended. The CM@RT-Repository stores 

Runtime Contexts and Issues even if they do not result in AC 

transitions. 

The answer to who detected the issue can be found in the 

attribute creator of the Issue entity, and it may consist on the 

SAS itself or on a human. SAS issues are generally concerned 

with self-* properties [21], e.g., self-healing, or user needs, 

e.g., controlling room temperature. On the other hand, human-

driven issues may have different concerns, e.g., corrective 

maintenance during operation, testing components during 

development, or evaluating system behaviour after 

adaptations. In any case, they relate to the current runtime 

context and determine modifications in the AC. 

The answer to why the SAS adapts requires evaluation 

over the Runtime Context and the Issue associated to a 

transition between AC. The runtime context shows detailed 

information over SAS runtime environment, allowing 

engineers to reason over them. Issues deal with several 

concerns (discussed in the previous paragraph), which can be 

registered in the attribute description for future analysis. Thus, 

Runtime Contexts and the corresponding Issues complement 

each other for answering this question. 

The answer to how the adaptation occurred is also 

associated with the Issue through adaptive actions it registers. 

However, these actions may consist on high-level 

modifications over the current AC, which leave aside low-

level dependencies among components and required services. 

For example, contracts are concerned with DSPL composition 

rules only [24], thus not required to address version conflicts 

of shared libraries among components. It is necessary to 

evaluate the differences between AC before and after the 

adaptations to realize the full extent of how the SAS was 

adapted. This could reveal if the SAS low-level dependency 

solution harmed contract results. 

B. Information Analysis 

The CM@RT-Visualizer is intended to work connected to 

CM@RT-Repository, retrieving information from its 

repository and exposing update events. Through a combination 

of views, the application provides analysis features that can be 

applied during monitoring and auditing.  

Monitoring support allows software architects and 

engineers to evaluate system behavior during runtime. For 

example, they may evaluate transitions among AC online, 

since the CM@RT-Visualizer updates its representations just 

after adaptations are recorded in CM@RT-Repository. It is 

also possible to evaluate the runtime contexts and issues as 

soon as they are recorded. 

Auditing support is only viable because all information is 

recorded in a repository, allowing after-the-fact analysis. It 

includes, among other features, a retrospective view. It is able 

to graphically replay the transitions performed at runtime in 

terms of AC diffs, runtime contexts diffs, and associated 

issues (see Section IV.D for more details).  

IV. CM@RT PROTOTYPE 

With the aim of evaluating our approach, we develop four 

prototypes. The first is a SAS framework, which follows the 

MAPE-K principle. The second is a version of the SCIADS
1
 

[12], [24], [26] compliant to the SAS framework. The third is 

the CM@RT-Repository module and the fourth is the 

CM@RT-Visualizer module. 

The main adaptation technology employed in our 

prototypes is OSGi
2
. OSGi leverages the construction of 

dynamic systems as sets of components, which can bind to 

services dynamically and automatically. The following 

subsections describe the developed prototypes. 

A. The SAS Framework 

The SAS Framework was implemented as independent 

OSGi components. The main component is the SelfAdapter. It 

supplies the basis of the framework, defining service 

interfaces, and model classes, and providing utility classes for 

others SAS Framework components. Other OSGi components 

(Knowledge, Monitor, Analyzer, Planner, and Adapter) 

implement specific services following the interfaces required 

by the SelfAdapter component. For example, the Monitor 

component implements the monitoring service of MAPE-K 

defined by the Monitor interface. 

B. The SCIADS Version Compliant to the SAS Framework 

SCIADS is a safety-critical DSPL-based SAS. Its AC is 

reconfigured according to adaptation actions determined by 

contracts and DSPL composition rules [12], [24]. The 

contracts use runtime context variables to determine high-level 

modifications in current AC, e.g., insertion or removal of 

components. In addition, SCIADS AC considers its patient 

specifics needs and residence characteristics. The combination 

of these factors results in a great number of possible AC and 

directly jeopardizes the predictability of system states [13].  

C. The CM@RT-Repository Module 

The CM@RT-Repository information acquisition module 

is the main element of our approach, as it provides services to 

all the other elements. The CM@RT-Repository provides a 

single API, which follows the Facade pattern, hiding internal 

services and their relationship.  

There are two service groups: repository and diffing. 

Repository services include SAS registration, information 

                                                           
1
 SCIADS is a home health care system developed at UFF 

(http://www.tempo.uff.br/sciads/). 
2
 Official site: http://www.osgi.org 
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storage, and querying over metamodel elements such as 

runtime context, issues, AC, and theirs transitions (see Figure 

1). The diffing service supports runtime context and AC 

comparison.  

D. The CM@RT-Visualizer Module 

The CM@RT-Visualizer module depends on services 

provided by the CM@RT-Repository module. For example, 

the query services of CM@RT-Repository are used to 

populate the views of CM@RT-Visualizer. 

After selecting a SAS among those registered in the 

repository, the information available for analysis is shown in 

the Repository view. It is organized in four groups: Runtime 

Contexts, Issues, Transitions, and Architecture Configurations. 

These groups can be seen in Figure 2, on the left hand side. 

Selected or general information can be analyzed through seven 

different views during monitoring or auditing activities, which 

are described in the following. 

 

Figure 2 History view 

The History view presents the SAS evolution as a whole 

through a graph. Figure 2 shows an example of runtime 

evolution history, in which SCIADS performed four different 

transitions. The nodes represent AC and the edges represent 

the transitions. 

The Architecture Configuration view presents the SAS 

AC also through a graph notation (see Figure 3). In this case, 

the nodes represent components and are identified by name 

and version, while edges represent the AC topology. Figure 3 

also shows metrics for assessing the quality of the AC [27]. 

The metrics are based in component provided service 

utilization (PSU) and required service utilization (RSU). The 

metrics are Average PSU, Average RSU, Compound PSU, and 

Compound RSU. 

The Architecture Configuration Diff view (see Figure 4) 

shows the differences between two AC selected from the 

Repository view through check boxes. It uses the same graph 

representation used in Architecture Configuration view, 

annotated with color codes, indicating added (green), removed 

(red), replaced (blue), and unchanged components (gray). In 

addition, there is a textual description identifying the 

differences found between the selected AC. This feature also 

uses the before mentioned color codes to favor visual 

identification. 

 
Figure 3 Architecture Configuration view 

The Runtime Context view represents the context 

information monitored by the SAS in the form of a grid. This 

grid contains the date of last update, the source, the attribute 

name, and the collected value. Similarly, the Runtime 

Context Diff view (see Figure 5) shows the differences 

between two runtime contexts selected from the Repository 

view. The diffing is performed considering each attribute and 

its value, but ignoring dates and sources, as these data are 

expected to always change. The Status column shows the 

results using the same designation and color code of the 

Architecture Configuration Diff view. 

 
Figure 4 Architecture Configuration Diff view 

 
Figure 5 Runtime Context Diff view 

The Issue view shows details of the registered issues. 

Figure 6 shows the inclusion date in the repository, the 

demand description, the actions required to modify the AC, 

and a textual description of the effects over the AC before the 

adaptation. It also has buttons to show the runtime context 

(Runtime Context view) and the difference between the AC 

before and after the adaptation (Architecture Configuration 

Diff view). 
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Finally, the Retrospective view uses the transition records 

from CM@RT-Repository to present an animation of the 

adaptations performed by the SAS system, replaying its 

operation for a chosen period. It is a composition of three 

views: Architecture Configuration Diff view (see Figure 4), 

Runtime Context Diff view (see Figure 5), and Issue view 

(see Figure 6). 

 
Figure 6 Issue view 

V. MONITORING AND AUDITING ANALYSES WITH CM@RT 

This section describes how CM@RT can help performing 

monitoring and auditing analyses under three scenarios. These 

scenarios use SCIADS as a concrete example. In this section, 

we assume that all prototypes are active during runtime in the 

OSGi platform. Monitoring and auditing performed using 

CM@RT-Visualizer features occurs as follows. 

A. False Positive and False Negative Adaptations Detection 

In SCIADS, identifying FP or FN adaptations require the 

evaluation of several contracts, considering their internal 

conditions. In Figure 5, the CM@RT-Visualizer shows 

examples of these internal conditions in the first 2 rows, along 

with corresponding values. The internal conditions were added 

to runtime context to enable their evaluation based in value 

differences between two runtime contexts. 

To identify a FP the user can also check the registered 

issues. The Issue view reveals which demands the SAS found 

on a particular runtime context in the description field. To 

identify FN, it is necessary to go through the registered 

runtime contexts. The Runtime Context Diff view helps to 

identify significant changes between runtime contexts, 

necessary to locate situations where adaptations should have 

occurred but did not. 

B. Adaptation Cycles Detection 

Another possible monitoring scenario consists on 

evaluating the SCIADS adaptation rate in a patient’s home. 

Besides adopting massive tests at development time, each 

patient home has its own requirements and features. 

Sometimes these features cannot be fully predicted, thus being 

a source of uncertainty to the SAS [28]  

Monitoring new AC transitions thought CM@RT-

Visualizer reveals the adaptation rate. Furthermore, it is 

possible to monitor the rate of runtime context updates and 

issues found. Monitoring runtime context and issues could 

reveal anomalies during operation which were missed during 

development. For example, the temperature thresholds 

configured according to the development site may be 

inadequate to the operation site, leading patient discomfort. 

C. After-the-fact Adaptations Tracking 

In SCIADS, if the patient is under dangerous health 

conditions, adaptations are severely restricted. During auditing 

of such behaviour, the manual analysis of textual system 

runtime logs would be counterproductive and error prone. The 

existence of a tool capable of representing historical 

information with semantic driven visualizations, make the 

auditing process more efficient and trustable if compared to 

textual analysis. 

The Retrospective view represents the progression of the 

SAS adaptations, enabling their evaluation by specialists. The 

view shows at the same time what changed, why it did, when 

it happened, and who requested it. In addition, the progression 

of the runtime context may reveal the effect of the adaptations 

in the SAS environment. 

VI. RELATED WORK 

Few works provide runtime CM infrastructure to manage 

AC evolution. Van der Hoek et al. [15], show that the AC of 

dynamic system evolve as well as source code, and were the 

first to propose the use of CM for managing this evolution. 

They developed an integrated architecture-driven environment 

called Mae. Mae provides features such as architecture 

evolution control, runtime adaptation patch generation, and 

product variant selection. In [16], van der Hoek continues to 

explore architecture evolution control for any time variability 

on DSPL. The approach comprises two applications: Ménage 

for evolution control and SelectorDriver for evolution 

handling. Ménage is part of the Mae environment, but focus 

only on the development phase. Our approach is 

complementary to these in the sense that we propose an 

infrastructure for tracking the architectural evolution during 

operation and post-operation phases, while their approach 

focuses on the development phase.  

Georgas et al. [4] use runtime CM to control architectural 

evolution and to leverage dependability on SAS through the 

use of Architectural Runtime Configuration Management 

(ARCM). ARCM is integrated to Eclipse IDE through a plugin 

[4], and comes with three main features: runtime architectural 

evolution control, graph-based visualization of architectural 

evolution, and architectural recovery facilities. In [17], 

Georgas et al. describe the use of ARCM to provide visibility 

and understandability over SAS runtime behavior and means 

for human intervention over the adaptation process. Despite 

the fact that it has some similarities with our approach, it is 

limited to AC evolution. Our approach tracks several other 

architectural evolution concerns, such as runtime context and 

related issue, and encompasses operation and post-operation 

phases. 

VII. CONCLUSION 

CM@RT represents our initial efforts on supplying CM at 

Runtime to provide a monitoring and auditing infrastructure 

for SAS, with special attention to DSPL. CM@RT-Repository 
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provides tracking functionalities over AC evolution and 

related information. Complementing the core application, we 

provide a repository visualization tool that supplies 

consolidated information and mechanisms for monitoring and 

auditing. Thus, CM@RT enables short, medium, and long 

time analysis over SAS behavior. In addition, since the 

CM@RT was designed to be deployed with the target SAS, it 

runs on-line in production and development environment. 

We also demonstrated how to perform monitoring and 

auditing with CM@RT. This provides some initial evidences 

that CM@RT is capable of providing behavior information for 

monitoring and trace information for auditing. In addition, we 

provide some SPL metrics for quality assessment and analysis 

support (see Figure 3). In the future, we intend to perform 

user-centered experiments to raise more evidence of its 

benefits. 

We believe the application of data mining on the repository 

would reveal the existence of significant adaptation patterns. 

For example, policies conflicts, components interoperability 

conflicts, or singular situations at runtime environment could 

be detected. With these patterns in hand, it would be possible 

to enhance the effectiveness of the adaptation contracts by 

treating previous patterns causes and, consequently, avoiding 

unstable architecture configurations. In addition, there are 

plans to use this information for developing automated 

analysis features. 
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