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ABSTRACT

Software developers often need to combine their contributions.

This operation is called merge. When the contributions happen at

the same physical region in the source code, the merge is marked

as con�icting and must be manually resolved by the developers.

Existing studies explore why con�icts happen, their characteristics,

and how they are resolved. In this paper, we investigate a speci�c

subset of merge con�icts, which may be resolved using a combina-

tion of existing lines. We analyze 10,177 con�ict chunks of popular

projects that were resolved by combining existing lines, aiming

at characterizing and �nding patterns that developers frequently

use to resolve them. We found that these con�icting chunks and

their resolutions are usually small (they have a median of 6 LOC

and 3 LOC, respectively). Moreover, 98.6% of the analyzed resolu-

tions preserve the order of the lines in the con�icting chunks. We

also found that 77.4% of the chunk resolutions do not interleave

lines from di�erent contributions more than once. These �ndings

altogether, when used as heuristics for automatic merge resolution,

could enable the reduction of the search space by 94.7%, paving

the road for future search-based software engineering tools for this

problem.
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• Software and its engineering → Search-based software en-

gineering;Collaboration in software development; Software

version control.
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Version control systems, software merge, con�ict resolution, search-
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1 INTRODUCTION

Nowadays, software is rarely developed by a single person. People

often collaborate to compose a software product. To achieve this,

developers usually adopt branches that represent separate lines of

development. Sometimes these branches live for a long time. Other

times they are allocated to making quick changes. Nonetheless,

when the time comes, these branches may need to be combined

to integrate the di�erent contributions. This integration is called a

merge. Amerge operation can be applied over two ormore branches.

The most common type of merge occurs over two branches. Thus,

we focus on merges of two branches without distinguishing the

branches’ lifespan. The last versions of each branch are called v1
and v2, where v1 is the branch the developer is working on and v2
is the branch merged into v1.

Whenmerging branches, con�icts may arise due tomodi�cations

to the base code that happen in parallel in the same physical region.

In a single merge operation, multiple �les or even multiple parts

of a �le may be marked by the merge algorithm as con�icting.

Each con�icting part is called a con�icting chunk and is composed

of con�icting lines from v1 and v2. Con�icts must be manually

resolved by the developers, who often need to interrupt their work

to reason, understand, and possibly interact with others, to resolve

the con�ict [6, 11]. Indeed, previous work [5, 10] report that from

16% to 54% of all merges result in con�icts.

Resolving merge con�icts is a time-consuming and error-prone

task. Thus, any automation to such a task is welcome. Previous work

[7] shows that 87% of the merge con�ict resolutions employ existing

code, pulled from one or both of the versions being merged, without

actually modifying any of these lines of code. This may happen by

just cherry-picking some lines or using all of them. Developers may

use some lines of code from just one version; they may also pick

lines from both, but doing so without interleaving them (essentially,

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3555228.3555229
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concatenating whatever lines pulled from one version with the

lines pulled from the other version); or they may mix lines of code

of both versions, interleaving them. Hence, a potential strategy for

resolving con�icts is using Search-based Software Engineering [8]

to explore the combinations of existing code. Given the number of

potential rearrangements of the source code, studying whether the

search space for solutions can be reduced is bene�cial for automated

approaches. This challenging problem was not explored in detail

yet in the literature and motivated our paper (we refer the reader to

[1, 7] to obtain a more extensive background on merge con�icts).

In this paper, we analyze a subset of the con�icts analyzed by

Ghiotto et al. [7]. Speci�cally, we analyze 10,177 con�icting chunks

from 1,076 open-source Java projects that were resolved by the

developers using a combination of the con�icting lines. Thinking

from an automatic tool perspective, �nding the correct combination

of lines to resolve a con�ict is a combinatorial problem, which tends

to be exponential to the size of the problem. Thus, our main goal is

to study whether there are patterns in these resolutions that might

make the problem easier. To achieve this, we: (i) characterize these

con�icts and resolutions, (ii) investigate whether the developers

preserve the partial order of the lines from the con�icting chunks

in the resolution, and (iii) investigate patterns regarding how the

developers combine the con�ict lines to compose the resolution.

We found that merge con�icts resolved by combining the con-

�icting lines of code are usually small (median of one chunk and

one �le, and a median of 6 LOC for the whole chunk and 3 LOC for

the resolution). We also found that most of the resolutions (98.6%)

do not violate the partial order of the chunk. Finally, we found

that 77.4% of the resolutions do not interleave lines from both ver-

sions of the chunk more than once. By leveraging our �ndings, we

demonstrate that the search space for resolutions could be reduced

by 94.7% for the common con�ict case. Thus, search-based tech-

niques could bene�t from these results to automatically �nd the

best combination of lines for resolving a con�ict.

The rest of this paper is organized as follows. In Section 2 we

discuss the materials and methods used throughout the study. Sec-

tion 3 shows the results of our analysis. In Section 4 the results are

discussed. The threats to the validity of our results are discussed

in Section 5. Section 6 describes related work. Finally, the �nal

remarks are presented in Section 7.

2 MATERIAL AND METHODS

This section describes the research questions of this study, the

dataset and the method used to collect data, and the methods used

to analyze the data and answer the research questions.

2.1 Research questions

The three research questions we focus on in this paper are:

• RQ1. What is the size of the con�icts and their resolutions?

• RQ2. Do developers preserve the con�icting chunk’s partial

order in the resolutions?

• RQ3. Are there any patterns in the resolutions?

The �rst research question aims at characterizing the con�icting

chunks and their resolutions. We organized the analysis into three

perspectives: the con�icting merges as a whole, each con�icting

�le in isolation, and each con�icting chunk independently. Address-

ing this research question gives us a sense of how spread out the

con�icts are into multiple chunks and multiple �les, as well as how

large the chunks are in terms of LOC. The larger the number of �les

and chunks, the more di�cult it is likely to be manually merged

and to come up with automatic tools. Thus, it is important to �rst

understand the size issue.

Regarding the second research question, preserving the chunk’s

partial order means that the resolution lines respect the order of the

lines from both sides of the con�icting chunk. Consider the con�ict-

ing chunk extracted from the project unitycoders/uc_pircbotx1 and

displayed in Listing 1 as an example. The content of v1 is displayed

between the <<<<<<< and the ======= markers. Analogously, the

content of v2 is displayed between the ======= and the >>>>>>>

markers. In this example, the developer resolved the con�ict by us-

ing lines 7, 10, and 11 fromv1, and lines 13 and 14 fromv2. However,

the order in which v1 lines were put in the resolution was changed

(lines 10 and 11 before line 7)2, as displayed in Listing 2. This is a

clear example where the partial order of the chunk is violated.

Listing 1: Chunk from project cucumber/cucumber-jvm.

1 }
2
3 @Override
4 <<<<<<<
5 public void s endSuc ce s s ( ) {
6
7 }
8
9 @Override
10 public S t r i n g getArgument ( in t i d ) {
11 return getArgument ( id , null ) ;
12 =======
13 public void r e spondSucc e s s ( ) {
14
15 >>>>>>>
16 }
17 }

Listing 2: Con�ict resolution adopted by the developer.

1 }
2
3 @Override
4 public S t r i n g getArgument ( in t i d ) {
5 return getArgument ( id , null ) ;
6 }
7
8 public void r e spondSucc e s s ( ) {
9
10 }
11 }

Considering that valid programs must adhere to the program-

ming language grammar, it makes sense to hypothesize that violat-

ing the partial order of the chunk is not common. Thus, in RQ 2 we

investigate whether this is true.

Finally, in the third question, we investigate if there are any

patterns regarding how developers combine lines to resolve con-

�icts in the con�icting chunk resolutions. For example, what is the

source of each line used in the resolution? Is it more frequent to

use lines fromv1 orv2? In which situations lines from each version

1https://github.com/unitycoders/uc_pircbotx
2https://github.com/unitycoders/uc_pircbotx/commit/
7a55eddfedd4b39�8bdaa8ca83773ac04adde89

https://github.com/unitycoders/uc_pircbotx
https://github.com/unitycoders/uc_pircbotx/commit/7a55eddfedd4b39ff8bdaa8ca83773ac04adde89
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of the chunk are used? Finding such patterns might be useful for

developing automated approaches to support the developers.

2.2 Data collection

Ghiotto et al. [7] collected and labeled the resolution strategy used

in 175,805 con�icting chunks from 25,328 merges that occurred in

2,731 open-source Java projects. They found that 50% of the chunks

were resolved by adopting the whole of v1, 25% by adopting the

whole of v2, 3% by concatenating one version after the other (v1v2
or v2v1), 9% by combining con�icting lines, and 13% by adding

new code. In this paper, we are interested in the chunks that were

resolved with combination, which excludes those that are resolved

with v1, v2, v1v2, v2v1, and new code. Starting from the 15,571

chunks resolved with combination from Ghiotto et al. [7]’s dataset,

some chunks needed to be discarded. A total of 1,998 chunks were

discarded because we needed to query GitHub to get additional

data about them, but they were not available anymore. Moreover,

264 chunks were discarded due to inconsistent con�ict markers,

e.g., cases of �les with many chunks causing the markers to overlap

each other. We also discarded 2,583 additional con�icting chunks

because the merge involved additional changes beyond just the

con�icting lines, making it not possible to isolate the resolution

from the rest of the �le. Finally, we discarded 549 chunks because

they belong to projects that are implicit forks of other projects in

the dataset, representing duplicated data. Thus, the dataset used

in this paper comprises 10,177 con�icting chunks that occurred in

5,346 merges from 1,076 open-source GitHub Java projects.

For each con�icting chunk, we collect its size, represented by

the number of lines inv1 andv2; the resolution size, represented by

its number of lines; and the contents of both the con�icting chunk

and its resolution.

In RQ1 we investigate characteristics such as the number of

chunks per con�icting merge and con�icting �le. Even though our

selection focused on the chunks that are resolved with combination,

our analysis also looks at the overall complexity of that merge.

Thus, some merges may contain not only chunks resolved with

combination, but may also include chunks resolved with other

strategies. To answer RQ1, where appropriate, these additional

chunks were included to show the full complexity of the merge.

2.3 Partial order analysis

Verifying whether the resolution of a con�icting chunk preserves

the chunk’s partial order is not a trivial task to perform manually,

especially for bigger con�icts. Thus, we developed an algorithm to

perform this task automatically, given the con�icting chunk and its

resolution content.

After executing the partial order algorithm on all chunks in the

dataset, we randomly sampled 30 chunks (21%) that violate the

partial order for performing manual analysis. The analysis was

performed manually because our goal is to further understand

the characteristics of these chunks. Our intuition was that even

though for some chunks the partial order was violated, for some

of them the order of the lines does not matter when considering

the programming language syntax. For example, if every line of

a chunk resolution is an import statement, then the order does

not matter, since these types of statements are independent of the

others. On the other hand, for other con�icts, like the one displayed

in Listings 1 and 2, using a di�erent ordering would break the

syntax of the source code.

2.4 Resolution pattern analysis

To answer RQ3 we analyze the composition of the con�icting

chunks’ resolution regarding the source of each line (v1 or v2).

For each chunk resolution, we count how many lines come from

v1 and v2. If a line appears in both v1 and v2, then the line counts

as 0.5 for each side. Thus, we normalize the v1 and v2 line count

and their sum will always be the same as the number of lines in

the resolution. We use this count to calculate the normalized v1
and v2 percentage in the resolution. This percentage represents the

proportion of v1 and v2 in the resolution.

We also use the source of each line to derive patterns in the

resolution. For example, consider v1 = (A,B,C) and v2 = (D,E).

The resolution R1 = (B,D) has the pattern v1v2, because its �rst

element comes from v1 and the second from v2. To simplify the

amount of possible patterns, we group consecutive lines from the

same source into a single element. Following the previous exam-

ple, the resolution R2 = (A,C,D,E) would also be represented by

the pattern v1v2, instead of v1v1v2v2. This strategy of grouping

consecutive elements was also used by Brindescu et al. [3] to iden-

tify interleaved commit patterns in di�erent branches. Using this

strategy, we classify the chunks’ resolutions into pattern groups,

according to their composition: using only lines fromv1 orv2, using

lines from v1 followed by lines from v2, or vice-versa, and using

more intricate patterns that interleave lines from v1 and v2 more

than once.

3 RESULTS

This section presents and discusses the results obtained for each

research question.

3.1 RQ1. What is the size of the con�icts and
their resolutions?

As discussed in Section 2.2, in some merges only the combination

strategy was used to resolve the con�icts, but many have 1 or

2 chunks resolved with combination and other chunks resolved

with di�erent strategies. Thus, Figure 1 includes data of 52,083

chunks from the 5,346merges of our dataset, of which 10,177 chunks

are resolved using combination. Chunks that were resolved with

combination are represented with a darker color, whereas chunks

that were resolved with another resolution strategy are represented

in a lighter color.

Most con�icting merges with at least one con�icting chunk re-

solved with combination have a small number of con�icting chunks.

In fact, 75% of all merges have 8 or fewer chunks. The median num-

ber of chunks per merge is 3. From a total of 5,346 con�icting

merges, 1,726 (32.3%) were resolved entirely with combination. The

proportion of chunks that are resolved with combination seems to

decrease as the number of chunks increases. If we consider only

the 1,726 con�icting merges where all chunks were resolved with

combination, 73% have one chunk, and 89.2% of them have up to

two chunks. The median of chunks per merge is 1.
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Figure 1: Number of con�ict chunks per con�ict merge.

Figure 2: Number of con�icting chunks per con�icting �le.

Another perspective that may overwhelm the developer when

confronting con�icting merges is the number of chunks per con-

�icting �le. Considering that the context of a �le may be more

restricted than the context of an entire merge, it seems reasonable

that chunks within the same �le are dealt with together. Figure 2

shows the distribution of the number of con�icting chunks per

con�icting �le.

We found that the analyzed merges have a median of a single

�le with con�icts (min 1, max 129). Moreover, 92.8% of the �les

have 5 or fewer con�icting chunks. From a total of 8,347 con�icting

�les, 5,124 (61.4%) were resolved entirely with combination. Similar

to Figure 1, the proportion of chunks resolved with combination

decreases as the number of chunks per �le increases. In fact, if we

consider only the 5,124 �les resolved entirely with combination,

97% of them have one or two chunks and the median of chunks is

one.

Considering the 5,346 merge con�icts with at least one con�ict-

ing chunk resolved with combination, we found that 42% have only

one �le and one chunk.

In addition to the number of chunks per merge and per �le,

Figure 3 shows the median chunk size, in terms of LOC, for merges

with a varying number of chunks. For example, merges with one

con�icting chunk have a median of 6 LOC. In comparison, merges

with two chunks have a median of 5 LOC. No particular trend was

observed in this analysis.

We also analyzed the size of con�icting chunks individually.

Figure 4 shows a boxplot representing the distribution of the size

of con�icting chunks. The median size is 6 LOC, with a minimum

of 2 and a maximum of 2,545. However, 75% of the chunks have up

to 11 LOC.

Figure 3: Median chunk size for con�icting merges in rela-

tion to the number of chunks.

Figure 4: Distribution of the con�icting chunks’ size (LOC).

Outliers excluded.

Finally, Figure 5 shows the distribution for the size of both v1

and v2 sides of the con�icting chunks individually and the size of

the resolution adopted by the developers. The median size of v1
is 2 LOC and of v2 is 3 LOC. The median size of the resolution is

also 3 LOC. Compared to the median size of the chunks (6 LOC), in

the median case, half of the con�icting chunk is discarded in the

resolution.

Finding 1: In total, 42% of the merge con�icts with at least one

con�icting chunk resolved by combining existing lines have only

one con�icting chunk and one con�icting �le. The con�icting

chunks have a median of 6 LOC, and the resolutions have a

median of 3 LOC. Compared to the general case, which includes

more resolution strategies, the merge con�icts in our dataset

have more but smaller con�icting chunks. The implication of

this �nding is related to the feasibility of resolving this type of

con�ict automatically. In this sense, a small number of small

chunks is good, considering that the combination problem is

exponential to the number of lines in v1 and v2.

3.2 RQ2. Do developers preserve the con�icting
chunk’s partial order in the resolutions?

From the 10,177 analyzed chunks, we found that only 142 (1.40%)

violate the chunk’s partial order in their resolution. Chunks that

violate the partial order have a median of 21 LOC and their res-

olutions have a median of 12 LOC. In comparison, chunks that
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Figure 5: Boxplots for the distribution of the size (LOC) of

v1, v2, and the chunk resolution, respectively. Outliers ex-

cluded.

Figure 6: Chunk and resolution size for chunks that violate

and do not violate the partial order. Outliers excluded.

Figure 7: Proportion of chunks that violate and do not vio-

late the partial order as the chunk size grows.

do not violate the partial order have a median of 6 LOC and their

resolutions have a median of 3 LOC. Thus, we may say that chunks

where the resolution violates the partial order are usually bigger

than chunks that do not violate. Figure 6 shows the size distribution

of chunks and their resolutions for both groups of chunks.

To investigate the relationship between the chunk size and the

phenomena of violating the partial order, Figure 7 shows the pro-

portion of chunks that violate and do not violate the partial order

as the chunk size grows. For example, 60.9% of the chunks having

more than 500 LOC violate the partial order.

Finding 1 suggests that the chunks are usually small. The previ-

ous paragraphs suggest that most of the small chunk resolutions do

not violate the partial order of the chunk. Thus, it seems reasonable

to assume that an automatic algorithm to resolve con�icts could

ignore cases that violate the partial order and reduce the search

space of candidate resolutions for small chunks. This strategy could

go even further since we also observed that the bigger the chunk,

the greater the chance of violating the partial order. Thus, the au-

tomatic algorithm could also use this information to tune itself by

ignoring the partial order depending on the chunk size.

As discussed in Section 2.3, we manually analyzed a sample of

30 (21%) chunks where the resolution violates the partial order. The

goal was to understand if the order of the resolution lines would

matter considering the programming language syntax. In other

words, if the order is not important for some of these cases, assum-

ing the partial order would not impair �nding a correct resolution.

We found that in 19 of the 30 analyzed chunks (63.3%) the order

of the lines is relevant due to syntax restrictions and forcing partial

ordering would avoid �nding a correct resolution. The median size

of the chunk, in this case, is 19 LOC. On the other hand, for the

remaining 11 chunks, although their resolutions violate the partial

order of the chunk, their order does not matter within the resolution

scope, i.e. considering just the resolution lines and not the entire �le.

Moreover, 9 of them include only import statements and 2 include

variable declarations that are not used within the resolution scope,

thus any shu�e of the existing lines would yield a valid resolution.

The median size of the chunk for this case is 6 LOC.

Finding 2: Only 1.4% of the analyzed chunks violate the partial

order. The chance of violating the partial order increases as the

chunk’s size increases. We also found that despite violating the

partial order in the resolution, the order of the lines does not

matter in the resolution scope in 36.7% of a sample of chunks that

violate the partial order. Thus, an automatic resolution algorithm

that enforces partial ordering to restrict the search space would

have failed in only 90 (0.88%) of the 10,177 analyzed chunks,

which have resolutions that violate partial ordering (1.4%) and

are not tolerant to ordering changes (63.3%).

3.3 RQ3. Are there any patterns in the
resolutions?

Figure 8 shows a histogram with the normalized percentage (ex-

plained in Section 2.4) of resolution lines coming from v1 and v2.

The y-axis shows di�erent ranges of the normalized v1 (left) and

v2 (right) percentages considered and the x-axis shows the number

of chunks for each of these ranges. For example, the �rst bar (top)

of the histogram shows that a little more than 1,500 chunks have

resolutions with from 90% to 100% of their lines coming from v1

and from 0% to 10% of lines coming from v2. The middle bar of the

histogram shows that almost 3,000 chunks have resolutions with

50% of their lines coming from v1 and 50% coming from v2.

Note that since the number of lines in the resolution is discrete,

some percentages are only possible for larger resolutions. For ex-

ample, a resolution with 10% of its lines coming from v1 or v2
must have at least 10 lines in total, which would represent one

line coming from v1 or v2. In comparison, resolutions with the

median number of lines (3 LOC) can have one, two, or three lines
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Figure 8: Histogram showing the number of chunks for the

normalized percentages of lines in the resolution that come

from v1 (left y-axis) and v2 (right y-axis).

coming from either v1 or v2. In each of these cases, they would

have 0%/100%, 33.3%/66.7%, 66.7%/33.3%, 100%/0% of v1/v2, respec-

tively. Thus, median resolutions could be placed in four di�erent

histogram bars, depending on the distribution of their composition.

We observed that the highest concentration of chunks in Figure 8

occurs in themiddle of the histogram, which represents chunkswith

50% of the resolution lines coming fromv1 and 50% coming fromv2.

Only chunks with an even number of lines in the resolution may

have this composition. On average, con�icting chunk resolutions

have 51% of their lines coming from v1 and 49% from v2.

The number of chunks in the extremes of the histogram is also

noteworthy. This means that a high percentage (28.7%) of chunks

have resolutions with a low percentage of its lines coming from

either v1 or v2. Moreover, we observed that 25.8% of all chunks

have either only lines from v1 (100% v1 and 0% v2) or only lines

from v2 (0% v1 and 100% v2) in their resolution. Thus, the high

concentration of chunks in the two extremes is mostly explained

by this case.

From the observations above, we classify the resolutions into

four groups. The groupsv1 only andv2 only include chunks where

the resolution contains only lines from v1 or v2, respectively. The

groups v1v2 and v2v1 include chunks where the developer uses

consecutive lines fromv1 orv2, then use lines from the other chunk

side, without going back to the previous side. That is, the lines from

di�erent versions of the chunk are not interleaved more than once.

We found that 1,367 (13.4%) of the chunks use thev1 only pattern

and 1,260 (12.4%) use the v2 only. This means that 25.8% of the

chunks use a subset of lines from one side of the con�ict.

For the cases where the lines come from both sides of the con�ict,

we found that 2,677 (26.3%) of the chunks use the v1v2 pattern. In

comparison, 2,093 (20.6%) use the v2v1 pattern. Thus, 46.9% of the

analyzed con�icting chunks do not interleave lines from di�erent

sides of the chunk more than once.

The four patterns discussed above cover 7,881 (77.4%) of all

chunks in our dataset. The remaining 22.6% use intricate patterns

such as multiple alternations between lines from v1 and v2.

The average size of v2 for chunks resolved with the v1 only

pattern is 1 (min 0, max 41). In comparison, the average size of v1

for chunks resolved with the v2 only pattern is 0.77 (min 0, max

34). This indicates that the developer often uses only lines from one

side of the chunk when the other side is small in size.

Figure 9 shows the proportion of resolution patterns used in the

chunks for di�erent chunk size deltas (v2 - v1). A negative delta

means that v1 is bigger than v2. Figure 9 also shows the relative

frequency of each chunk size delta in the dataset at the top of

the Figure. Note that, since some chunk size delta values are not

frequent in the dataset, values that are not in the center of the Figure

are represented by an interval of chunk size deltas. For example,

the bar at the chunk size delta value of -260 encompasses chunk

size deltas that are > −310 and ≤ −260.

Figure 9 shows that most of the chunks are concentrated with

low chunk size delta values. It also shows that none of the resolution

patterns dominate the most frequent delta values. However, when

v1 > v2 thev2 only strategy is used in only 0.4% of the chunks. This

can also be observed whenv2 > v1, with thev1 only strategy being

used in only 1.4% of the chunks. This reinforces that the developer

often uses only lines from one side of the chunk when the other

side is small in size. To complement this analysis, we also calculated

the correlation between the v2 percentage in the resolution and the

chunk size delta. Since the distribution of the data is not normal, we

used Spearman’s Rank Correlation Coe�cient[9]. We found that

there is a moderate positive (ρ = 0.674) correlation between the

two variables. This means that as the chunk size delta increases

(i.e. v2 > v1), the v2 percentage in the resolution also increases.

Analogously, the v1 percentage decreases (ρ = −0.666).

To �nish this analysis, we can also observe in Figure 9 that when

the chunk size delta is 0, that is, v1 and v2 have the same size, the

developer rarely uses only lines from one of the sides. When this

happens, in 41.5% of the chunks the v1v2 pattern is used. The v2v1
pattern is used in 35.2% of the chunks, and 20.3% of the chunks

use other patterns. This observation may be useful for devising

automatic approaches that use the chunk’s characteristics, such as

v1 and v2 size, to prioritize the type of resolutions to search for.

Finding 3: On average, half of the resolution contents come

fromv1 and the other half fromv2. We identi�ed four resolution

patterns that describe 77.4% of the cases: using only lines from

v1 (13.4%) or v2 (12.4%), and using lines from either v1 or v2
followed by lines from the other chunk side (26.3% for v1v2 and

20.6% for v2v1). Finally, we also found that when both sides of

the con�ict have the same size, the developer mostly uses v1v2
(41.5%) orv2v1 (35.2%). On the other hand, we found a moderate

correlation (ρ = 0.674) suggesting that the bigger one side of the

chunk is, the bigger the chance of the developer choosing lines

from that side to compose the resolution. These results may be

useful for devising heuristics to resolve con�icts. For example,

the heuristic can: (i) prioritize lines from the bigger side of the

chunk, (ii) prioritize thev1v2 andv2v1 patterns when both sides

of the chunk have the same size, and (iii) exclude resolutions

that interleave lines from both sides of the chunk more than

once and still �nd the correct resolution for 77.4% of them.

4 DISCUSSION

Number of con�icting chunks: Ghiotto et al. [7] found that 40% of

the con�icting merges have one chunk and 90% have 10 or fewer
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Figure 9: Frequency of each chunk size delta (top) and proportion of resolution patterns used for each chunk size delta (v2 -

v1).

chunks. In comparison, in our analysis, which includes merges that

have at least one chunk resolved with combination, 23.6% of the

merges have one chunk and 81.3% have 10 or fewer chunks. This

suggests that merge con�icts that include chunks resolved with

combination usually have more chunks than the average case.

Size of con�icting chunks: When considering the size of con�ict-

ing chunks, Ghiotto et al. [7] found that 94% of the chunks have

up to 50 LOC in each version, 68% have up to 10 LOC, and 50% up

to 5 LOC. In contrast, we found that 98.6% of our analyzed chunks

have up to 50 LOC, 88.8% up to 10 LOC, and 76.5% have 5 or less

LOC. Regarding the size of each side of the chunk, they found that

the median v1 size is 2 and the median v2 size is 2.5. We found that

the chunks analyzed in our study have the same median size for

v1 and a slightly bigger median size for v2 (3 LOC). Based on these

observations, the results indicate that chunks that are resolved with

combination have a slightly bigger v2. However, it seems that the

chunks in this study are much smaller than in the general case.

Contrary to con�icts resolved entirely with v1, v2, v1v2, or v2v1,

con�icts that are resolved with combination may be harder to re-

solve using automated approaches. This is due to the exponential

nature of the problem of combining existing lines. To illustrate this,

we expand on the reasoning behind the total number of possible

combinations for resolving a con�ict.

To start, consider that each line in the con�ict may or may not

be used in the resolution. In addition, each line may appear in a

position in the resolution that is di�erent from its original position

in the chunk, i.e. a permutation of the original lines. The formula
n!

(n−i)!
represents the number of possible permutations of size i for

a tuple with n elements. For example, given the tuple S = (A,B,C)

with n = 3, consider that we are interested in �nding the number

of permutations with size i = 2. By applying the formula 3!

(3−2)!
,

we �nd that there are 6 di�erent ways of arranging S in tuples of

size 2. Namely: S1 = (A,B), S2 = (A,C), S3 = (B,A), S4 = (B,C),

S5 = (C,A), S6 = (C,B). Given that we know how to get the number

of permutations of a given size for a tuple, we now are interested

in candidate resolutions (i.e. tuples) of all sizes from 1 to v1 + v2
size, which we call n. Thus, we add the result of the permutations

formula for each of the sizes, resulting in Equation 1.

It is important to highlight that all the following equations must

be subtracted by 4 units, which corresponds to the resolutions that

use the whole v1, v2, v1v2, and v2v1, since they are not the focus

of this paper. The exception is when v1 or v2 have zero lines. In

this case, only one unit is subtracted from the equations. We omit

this subtraction in the equations to make them less cluttered.

N (n) =

n
∑

i=1

n!

(n − i)!
(1)

To illustrate Equation 1, consider the median con�icting chunk

case, with 6 LOC in total. In this case, the total number of di�erent

combinations is 1,952. This number grows very quickly as the

con�ict gets bigger. For example, a con�ict with 7 LOC has 13,695

di�erent combinations of its lines. A con�ict with 20 LOC on each

side, which is much smaller than the biggest con�ict in our dataset,

has around 2.22 × 10
29 di�erent options.

In a permutation, we may have di�erent arrangements of the

elements as shown above. On the other hand, in a combination, the

order of the elements is disregarded. We found in RQ2 that only

1.4% of the chunks violate the partial order in the resolution. Since

this represents a small number of chunks, we may assume that

all resolutions must respect the partial order of the chunk, i.e. the

resolutions are combinations of the original lines.

The formula for calculating the total number of combinations of

size i for a tuple with n elements is n!
i !(n−i)!

. This can also be written

as
(n
i

)

, which can be read as n choose i. Following the example of

the tuple S = (A,B,C), if we are interested in �nding the number
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of combinations of size i = 2, we have 3!

2!(3−2)!
= 3. Thus, there are

3 di�erent combinations of size 2 for S : S1 = (A,B), S2 = (A,C),

S3 = (B,C). Knowing how to get the number of combinations of

a given size, we may use the product rule to calculate ways of

choosing lines from v1, v2, or both. Thus, in Equation 2, the �rst

term
(L1
i

)

represents the number of ways of picking i lines from v1,

where L1 represents the total number of lines in v1. Analogously,

the second term
(L2
j

)

, represents the number of ways of picking j

lines from v2, where L2 represents the total number of lines in v2.

The third term
(i+j
i

)

represents the number of ways of picking i lines

from both v1 and v2. Finally, the goal of the last term min (1, i + j)

is to remove empty resolutions from the sum (when i and j are

equal to 0). Using the same principle from Equation 1, we add the

result of each iteration representing di�erent resolution sizes.

N (L1,L2) =

L1
∑

i=0

L2
∑

j=0

(

L1

i

) (

L2

j

) (

i + j

i

)

min (1, i + j) (2)

Following the example of the median chunk size, suppose that

the con�icting chunk has L1 = 2 and L2 = 4. In this case, applying

Equation 2, only 211 combinations respect the partial order of both

v1 and v2. This number represents a search space that is 10.8% of

the search space using Equation 1. As another example, applying

Equation 2 for the case with 7 LOC (L1 = 3 and L2 = 4), yields 659

options (4.8% of the search space using Equation 1) and for the case

with 20 LOC on each side, around 1.62 × 10
18 options (< 0.001% of

the search space using Equation 1). Table 1 shows the percentage of

the search space represented by Equation 2 in relation to Equation 1

for di�erent chunk sizes.

Analyzing Table 1, we can observe that the search space reduc-

tion using Equation 2 grows very quickly as the chunk size gets

bigger. In fact, for chunk sizes (L1 + L2) bigger than 14 LOC, the

search space represented by Equation 2 in relation to Equation 1

is so small that it cannot be represented using only three decimal

places. These cases are highlighted in bold.

We also found in our study that 72.9% of the chunks that are re-

solved with combination follow an additional restriction regarding

the resolution content. They use only lines from v1 or v2, or they

use lines from either v1 or v2 followed by lines from the other side.

That is, the lines fromv1 andv2 are not interleaved more than once.

Thus, In Equation 3, we remove the third term from Equation 2. The

only two options for picking lines from v1 and v2 is to have some

lines of v1 then some lines of v2, or the opposite. Thus, the third

term in Equation 3 represents this option: (min (1, i) + min (1, j)).

We cannot simply add 2 units to the equation, since there are special

cases where i and j are equal to 0.

N (L1,L2) =

L1
∑

i=0

L2
∑

j=0

(

L1

i

) (

L2

j

)

(min (1, i) +min (1, j) (3)

Using the example of the median case for a chunk with L1 = 2

and L2 = 4 in Equation 3 results in only 104 feasible combinations

(49.3% of the search space using Equation 2). For the case with L1 =

3 and L2 = 4, Equation 3 results in 228 feasible combinations (34.6%

of the search space using Equation 2). Finally, for the bigger chunk

with 20 LOC on each side, Equation 3 results in around 2.2 × 10
12

(< 0.001% of the search space using Equation 2) combinations.

Table 2 shows the search space represented by Equation 3 in relation

to Equation 2 as the chunk size grows.

We observed that Table 2 shows no relative search space smaller

than 0.001%. On the other hand, Table 1 shows that chunks bigger

than 14 LOC have a relative search space smaller than 0.001%. Thus,

the search space reduction provided by Equation 3 over Equation 2

is smaller than that provided by Equation 2 over Equation 1.

By leveraging the �ndings of our study to investigate the number

of possible combinations for a con�icting chunk, we show it is

possible to reduce the search space for a given order of magnitude

and thus allow the combinations of small chunks, which we have

shown are very frequent, to be addressed in a reasonable time.

There is a trade-o� between the number of cases that can be covered

by the added restrictions and the magnitude of the reduction of

feasible combinations. We show that by restricting the resolutions

to comply with the partial order of the chunks, there is coverage

of 98.6% of the analyzed chunks. In this situation, following the

median chunk size, the search space is 10.8% of the search space

without restrictions. In other words, the search space is reduced by

89.2%. Using both the partial order restriction and the restriction to

allow only resolutions that do not interleave lines from both sides

of the chunk more than once, there is still coverage of 72.6% of

the chunks in our dataset. In practical terms, following the median

case example, we reduce the search space of the problem by 94.7%

(from 1,952 to 104 options) at the cost of reducing the number of

chunks where such a heuristic would succeed. These numbers are

encouraging for the application of search-based techniques to the

problem of con�ict resolution.

5 THREATS TO VALIDITY

The data of the projects and con�icts we used in our study were

collected initially by Ghiotto et al. [7]. Thus, we are subject to the

same threats to internal validity associatedwith their data collection.

They mitigated most of these risks by selecting random con�ict-

ing chunks, analyzing the con�icting chunk text and resolution,

extracting the relevant information, and comparing it to their auto-

mated collection to ensure the automated classi�cation and data

extraction was working as intended. In addition, two researchers

independently checked samples and discussed cases where they

did not agree to reach a consensus. Besides such actions to mitigate

risks, we found a new data issue: the authors �ltered out explicit

repository forks from their data using the metadata from GitHub

API that �ags a repository as a fork. However, we observed that this

�lter does not accurately remove all fork projects, as it does not de-

tect implicit forks. We analyzed and compared the commit history

of every repository in our dataset and �ltered out those with any

commit in common. Regarding the construct validity, the partial

order checking algorithm was thoroughly tested with synthetic

and real examples to ensure it worked as intended. In addition, we

selected random samples of the chunks after performing the study

to verify whether the algorithm classi�ed them correctly.

Finally, regarding the external validity, our results may not be

generalized to projects that are not open-source or developed in a

programming language other than Java. We expect to mitigate this

generalization threat in futureworks by analyzingmore repositories

in di�erent programming languages.
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Table 1: Search space size for Equation 2 relative to Equation 1 for di�erent v1 and v2 sizes.

v2 size (L2)
0 1 2 3 4 5 6 7 8 9 10

v1 size

(L1)

0 N/A 100.000% 66.667% 42.857% 22.222% 9.259% 3.171% 0.920% 0.232% 0.052% 0.010%
1 100.000% 100.000% 63.636% 38.333% 18.380% 7.121% 2.300% 0.638% 0.155% 0.034% 0.007%
2 66.667% 63.636% 46.667% 25.234% 10.809% 3.819% 1.149% 0.301% 0.070% 0.015% 0.003%
3 42.857% 38.333% 25.234% 12.295% 4.812% 1.579% 0.447% 0.111% 0.025% 0.005% <0.001%
4 22.222% 18.380% 10.809% 4.812% 1.748% 0.539% 0.145% 0.034% 0.007% 0.001% <0.001%
5 9.259% 7.121% 3.819% 1.579% 0.539% 0.157% 0.040% 0.009% 0.002% <0.001% <0.001%
6 3.171% 2.300% 1.149% 0.447% 0.145% 0.040% 0.010% 0.002% <0.001% <0.001% <0.001%
7 0.920% 0.638% 0.301% 0.111% 0.034% 0.009% 0.002% <0.001% <0.001% <0.001% <0.001%
8 0.232% 0.155% 0.070% 0.025% 0.007% 0.002% <0.001% <0.001% <0.001% <0.001% <0.001%
9 0.052% 0.034% 0.015% 0.005% 0.001% <0.001% <0.001% <0.001% <0.001% <0.001% <0.001%
10 0.010% 0.007% 0.003% <0.001% <0.001% <0.001% <0.001% <0.001% <0.001% <0.001% <0.001%

Table 2: Search space size for Equation 3 relative to Equation 2 for di�erent v1 and v2 sizes.

v2 size (L2)
0 1 2 3 4 5 6 7 8 9 10

v1 size

(L1)

0 N/A 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%
1 100.000% 100.000% 85.714% 78.261% 71.186% 64.748% 59.048% 54.077% 49.771% 46.043% 42.803%
2 100.000% 85.714% 71.429% 59.259% 49.289% 41.300% 34.948% 29.889% 25.829% 22.537% 19.839%
3 100.000% 78.261% 59.259% 45.000% 34.598% 27.036% 21.492% 17.366% 14.244% 11.840% 9.959%
4 100.000% 71.186% 49.289% 34.598% 24.843% 18.281% 13.770% 10.594% 8.304% 6.617% 5.350%
5 100.000% 64.748% 41.300% 27.036% 18.281% 12.758% 9.162% 6.748% 5.080% 3.897% 3.040%
6 100.000% 59.048% 34.948% 21.492% 13.770% 9.162% 6.302% 4.461% 3.236% 2.399% 1.811%
7 100.000% 54.077% 29.889% 17.366% 10.594% 6.748% 4.461% 3.044% 2.135% 1.532% 1.122%
8 100.000% 49.771% 25.829% 14.244% 8.304% 5.080% 3.236% 2.135% 1.450% 1.010% 0.719%
9 100.000% 46.043% 22.537% 11.840% 6.617% 3.897% 2.399% 1.532% 1.010% 0.684% 0.474%
10 100.000% 42.803% 19.839% 9.959% 5.350% 3.040% 1.811% 1.122% 0.719% 0.474% 0.320%

6 RELATED WORK

In this Section, we discuss works that are related to ours. We focus

mainly on studies that classify con�ict resolutions and that analyze

con�icts complexity.

Yuzuki et al. [15] focus on studying how developers resolve

con�icts. They analyzed a total of 779 con�icts at the method level

from 10 open-source Java projects. They found that 48% of the

con�ictmethodswere caused by the deletion of the involvedmethod

in one of the versions. 44% are caused by concurrent edits and 8% are

caused by method renaming. Regarding the resolution, they found

that 99% of the con�icts were resolved by adopting the contents

of one of the versions. Di�erent from our study, they classify the

con�ict resolutions based on the semantics of the changes at the

method level. In our case, we focus on the text lines from the chunks.

Nguyen and Ignat [12] analyzed adjacent-line con�icts of four

large open-source projects. They classi�ed these con�ict resolutions

in three di�erent ways. One is applying changes from both versions.

Another option is to apply the changes from one of the versions.

Finally, the last option is to not apply any change at all. They found

di�erent proportions where the resolutions include modi�cations

from both versions, varying from 24.4% to 85%. Di�erent from our

study, they focus on adjacent-line con�icts reported by Git. In our

study, we do not di�erentiate between con�ict types, instead, we

focus on a speci�c type of resolution strategy.

Ghiotto et al. [7] perform a large-scale study with 2,731 open-

source Java projects aiming to investigate con�icts characteristics

and how they are resolved by developers. Con�icting chunks res-

olutions are classi�ed as choosing one of the con�icting versions,

concatenating one version after the other, combining the lines in-

volved in both versions, writing new code, or having no resolution

at all. They found that most of the chunks are resolved by adopt-

ing one of the versions in con�ict. Furthermore, they also found

that 87% of the chunks contained only lines that already existed

in the con�ict, and 90% of the chunks have less than 50 LOC in

each version. They identi�ed di�erent patterns regarding how the

developers resolve con�icts but did not delve into any of them. Our

paper is a follow-up to this study. Here we speci�cally focus on

con�icts that were resolved using the combination strategy.

Brindescu et al. [2] perform an empirical study using 6,979 con-

�icts from 143 open-source Java projects. Their goal is to analyze

how merge con�icts impact the quality of the software. According

to them, a con�ict may be resolved by selecting one of the involved

versions, interleaving the code present in both versions, or adapting

the con�icting code. They found a di�erent distribution of resolu-

tion patterns when compared to the previous works [7, 15]. The

most common pattern is to adapt the code, occurring in 60.8% of

the con�icts. The second most common is to interleave the code

(26.4%) and �nally, to select one of the versions, occurring in 12.8%

of the con�icts. They also found that code involved in con�icts is

more likely to be involved in future bugs. Similar to Ghiotto et al.

[7], the authors identi�ed some resolution strategies but did not

focus on any particular one. In our paper, we focus speci�cally on

the strategy they classify as "interleaving code".

Pan et al. [13] perform an empirical study on the Microsoft Edge

project, which is a fork of the Chromium project. They �rst inves-

tigated the characteristics of con�icts in the project. Then, based

on the characteristics, they propose an approach that can learn

from examples of con�ict resolutions of the project and generate

resolutions for new con�icts. They found that most con�icts in the

project have only 1 or 2 lines. In addition, 98% of the con�icts have

less than 50 LOC. The proposed approach for resolving con�icts
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was able to �nd the resolution in 11.4% of all con�icts of C++ �les

with an accuracy of 93.2%. Di�erent from our study, where we study

con�icts from a range of open-source projects, they focus on one

speci�c project, which is a fork of a very popular project.

Some studies [3, 4, 11, 14] focus on the di�culty of resolving

con�icts from the perspective of the developer. Nelson et al. [11]

perform interviews and conduct surveys with developers to in-

vestigate how they perceive the di�culty of resolving con�icts.

According to the authors, the developers perceive that the con�ict

complexity has more impact on the resolution di�culty than the

con�ict size. Brohi [4] and Vale et al. [14] analyzed the correlation

between di�erent project metrics and characteristics of con�icts.

They concluded that resolving con�icts do not involve only looking

at the con�ict code, but also at the greater picture of the merge.

This conclusion was based on the �nding that merge metrics were

more correlated to the time to resolve a con�ict than the merge

con�ict metrics. Finally, Brindescu et al. [3] investigated the feasi-

bility of predicting the di�culty of con�icts resolution. According

to them, the most important attribute when predicting the con�ict

resolution di�culty is the cyclomatic complexity, which reinforces

the �ndings of the previous studies that analyze the developer per-

spective. Di�erent from these studies, which focus on the developer

perspective, we focus on how the con�icts can be resolved by au-

tomated approaches. To this end, we discuss con�icts’ complexity

based on the number of possible combinations of con�icting lines.

Our work complements previous studies by investigating the

con�ict characteristics and the resolution patterns of con�icts that

were resolved by combining existing lines. We also shed light on

the complexity of automating this type of con�ict resolution.

7 CONCLUSION

This paper investigates how developers resolve con�icting chunks

by combining the con�icting lines. To achieve this, we analyze

10,177 con�icting chunks from 1,076 open-source Java projects.

We found that the subset of con�icts we analyzed has a median of

6 LOC and their resolutions have a median of 3 LOC. We also found

that 98.6% of the con�icts do not violate the partial order of the

chunk and that in 77.4% of them, the developers do not interleave

lines from di�erent sides of the con�ict more than once.

We leverage our �ndings to argue that it is possible to reduce

the search space of feasible con�ict chunk resolutions. For instance,

the search-space reduction for the median chunk case is 94.7%. This

reduction is even bigger for harder cases, where the chunk has

more lines. This is encouraging for the adoption of search-based

techniques for automating con�ict chunk resolution.

In future work, we intend to investigate if our �ndings hold

for di�erent programming languages. We also plan to investigate

the remaining resolution patterns that were not analyzed in this

paper. Furthermore, we plan to analyze the code characteristics of

the resolutions for each pattern. Finally, we also plan to leverage

our �ndings to develop an approach that employs search-based

techniques to generate candidate resolutions for con�icting chunks.

We hope that such an approach can help to alleviate the pain of

developers when dealing with merge con�icts.
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