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MOTIVATION

• Refactorings are a usual 

practice during software 

development

• At the physical level, 

refactorings imply file 

renames and moves and 

code snippets moves 

across files

• However, current generic 

diff tools detect lines

additions and deletions 

within files

Refactorings Generic Diff

Code move 

across files

File move

File rename

Line add and 

del within files

File name used 

for match
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POS (point-of-sale) system, implemented in Java

Refactoring applied over 

the base version:

Move Method    

Rename Method    

Encapsulate Field
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When this scenario is analyzed using conventional diff algorithms, changes 

are usually described only in terms of two basic operations: additions and 

removals. 

POS (point-of-sale) system, implemented in Java
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When this scenario is analyzed using conventional diff algorithms, changes 

are usually described only in terms of two basic operations: additions and 

removals. 

GOAL

Conceive a generic diff algorithm that precisely 

identify refactoring-related changes
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When this scenario is analyzed using conventional diff algorithms, changes 

are usually described only in terms of two basic operations: additions and 

removals. 
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Generality
Accuracy

Efficiency
Accuracy

Granularity

Data model

ITERATIVE DIFF

(IDIFF)

MOTIVATING

EXAMPLE



IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

IDIFF

§ Approach steps: 

§ Approach overview:

Filter Match Compare Visualize
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“two successive revisions are often very similar (98% similar in average)” 

Jacky Estublier
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DDIFF - Detect identical files 
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DDIFF – Detect similar files

Filter Match Compare Visualize
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Hungarian Algorithm
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import java.util.List;

import java.util.Map;

public class CardPayment extends Payment {

private Integer installments;

}

import java.util.Map;

import java.util.List;

public class CardPayment extends Payment {

public Integer installments;

}

C:\ Directory  1\payment\CardPayment.java

C:\ Directory  2\payment\CardPayment.java
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private 

Integer 

installments;

public 

Integer 

installments;

C:\ Directory  1\payment\CardPayment.java

C:\ Directory  2\payment\CardPayment.java
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FDIFF – Pairwise Comparison, Differences Perspective

(comparing the same file)

Filter Match Compare Visualize
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v

FDIFF – Pairwise Comparison, Similarity perspective

(comparing different files)

Filter Match Compare Visualize
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PLANNING AND EXECUTION

• Research questions:

• Which is the best granularity configuration for 

IDiff?

• Does IDiff increase the precision (correctness) 

when compared to a generic Diff tool?

• Does IDiff increase the recall (completeness) 

when compared to a generic Diff tool?

• In which situations (refactoring types) IDiff

performs better than a generic Diff tool?
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PLANNING AND EXECUTION

• Execution of 76 refactorings from the 

Fowler’s book

• Comparison of the expected results with the 

results provided by IDiff and WinMerge

• WinMerge selected as baseline out of a 

survey with 63 developers
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PRECISION/RECALL ANALYSIS

Summary distributions for 

IDIFF and WinMerge

IDIFF

WinMerge

Precision                                     Recall

F-measure

Line                         Word                     Character

(p-value = 0.015)   (p-value < 0.001)    (p-value = 0.548)
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Line                         Word                     Character

(p-value = 0.270)   (p-value = 0.007)    (p-value < 0.001)

Line                         Word                     Character

(p-value = 0.015)    (p-value = 0.05)     (p-value = 0.003)

COMPARISON OF MEAN – WILCOXON TEST
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• Reliability of measurements

• The use of 76 refactorings described in the Fowler's book

• The absence of experience with large projects leaves doubt 

whether the result will be satisfactory in these scenarios

• WinMerge as baseline

MAIN THREATS TO VALIDITY
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CONTRIBUTIONS

• IDiff provides results with higher precision if compared to 

a generic Diff tool, without drastic reduction of recall

• IDiff employs efficient algorithms for detecting the 

optimal content-based similarity amongst files

•Different visualizations (pairwise and multiple) and 

according to different perspectives (similarities and 

differences)

• The use of iterative granularity reduction to conciliate 

precision and efficiency
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FUTURE WORK

• Consider programming language grammars

• Develop a merge tool supported by the foundations of 

this work

• Exploit parallel processing of ever-common multi-core 

computers and GPU

• Combine with refactoring detection techniques by using 

regular expressions over the diff results to index a 

refactoring catalog
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PLANNING AND EXECUTION Inline Method

Precision Recall F-measure

IDIFF 1 1 1

WinMerge 0,56 0,73 0,63
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Which is the best granularity configuration for 

IDIFF?
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Answer: Word
(Friedman test à Bonferroni corr. àWilcoxon test)



IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 55

In which situations (refactoring types) IDIFF is more 

precise than a generic Diff tool?

Answer: 

II – Composing 

methods

IV – Making method 

calls simpler

V – Moving features 

between objects

VII – Simplifying 

conditional 

expression
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Recall – word grain

57



F-measure – word grain
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Related Work

• Clone detection

• Refactoring detection

• Diff

– Malpohl (2003): rename detection, language 
specific

– Canfora et al. (2009): improvements over Unix 
Diff, line grain

– Antoniol et al. (2004): evolution discontinuities, 
language specific
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