
IDIFF

DIFF

DIFF

DIFFDIFF

DIFF

Towards a Difference Detection Algorithm

aware of Refactoring-related Changes

Fernanda Silva1 Eraldo Borel1 Evandro Lopes2 Leonardo Murta1

1 Computing Institute

Fluminense Federal University (UFF)

Niterói, Rio de Janeiro, Brazil

e-mail: {ffloriano,leomurta}@ic.uff.br

eraldoborel@id.uff.br

2 Department of Statistics

Fluminense Federal University (UFF)

Niterói, Rio de Janeiro, Brazil

e-mail: evandro_dalbem@id.uff.br

The Brazilian Symposium on

Software Engineering (SBES)

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 2

MOTIVATION

• Refactorings are a usual

practice during software

development

• At the physical level,

refactorings imply file

renames and moves and

code snippets moves

across files

• However, current generic

diff tools detect lines

additions and deletions

within files

Refactorings Generic Diff

Code move

across files

File move

File rename

Line add and

del within files

File name used

for match

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

POS (point-of-sale) system, implemented in Java

Refactoring applied over

the base version:

Move Method

Rename Method

Encapsulate Field

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 3

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

When this scenario is analyzed using conventional diff algorithms, changes

are usually described only in terms of two basic operations: additions and

removals.

POS (point-of-sale) system, implemented in Java

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 4

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

When this scenario is analyzed using conventional diff algorithms, changes

are usually described only in terms of two basic operations: additions and

removals.

GOAL

Conceive a generic diff algorithm that precisely

identify refactoring-related changes

EVALUATION

CONCLUSIONS

INTRODUCTION

Slide 5

MOTIVATING

EXAMPLE

ITERATIVE DIFF

(IDIFF)

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

When this scenario is analyzed using conventional diff algorithms, changes

are usually described only in terms of two basic operations: additions and

removals.

TRADEOFFS

EVALUATION

CONCLUSIONS

INTRODUCTION

Slide 6

Generality
Accuracy

Efficiency
Accuracy

Granularity

Data model

ITERATIVE DIFF

(IDIFF)

MOTIVATING

EXAMPLE

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

IDIFF

§ Approach steps:

§ Approach overview:

Filter Match Compare Visualize

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 7

DDIFF

Filter Match Compare Visualize

Slide 8

“two successive revisions are often very similar (98% similar in average)”

Jacky Estublier

Filter Match Compare Visualize

DDIFF - Detect identical files

Slide 9

4D2E...

8E12...

F72N...

2G7E...

GD43...

9FG4...

T23O...

654H...

A3F5...

O9H2...

Slide 10

Filter Match Compare Visualize

4D2E...

8E12...

F72N...

2G7E...

GD43...

9FG4...

T23O...

654H...

A3F5...

O9H2...

4F3E...

Slide 11

Filter Match Compare Visualize

4D2E...

8E12...

F72N...

2G7E...

GD43...

9FG4...

T23O...

654H...

A3F5...

O9H2...

4F3E...

8E12...

Slide 12

Filter Match Compare Visualize

4F3E...4D2E...

F72N...

2G7E...

GD43...

9FG4...

T23O...

654H...

A3F5...

O9H2...

Slide 13

Filter Match Compare Visualize

4F3E...4D2E...

F72N...

2G7E...

GD43...

9FG4...

T23O...

654H...

A3F5...

O9H2...

5G3E...

Slide 14

Filter Match Compare Visualize

4F3E...4D2E...

F72N...

2G7E...

GD43...

9FG4...

T23O...

654H...

A3F5...

O9H2...

5G3E...

2G7E...

Slide 15

Filter Match Compare Visualize

4D2E...

F72N...

GD43...

9FG4...

T23O...

654H...

A3F5...

O9H2...

4F3E...

5G3E...

Slide 16

Filter Match Compare Visualize

4D2E...

F72N...

GD43...

9FG4...

T23O...

654H...

A3F5...

O9H2...

4F3E...

5G3E...

GD43...

9FG4...

654H...

A3G5...

O9i2...

T33O...

Slide 17

Filter Match Compare Visualize

2G7E...

Slide 18

Filter Match Compare Visualize

DDIFF

Filter Match Compare Visualize

Slide 19

2G7E...

Slide 20

Filter Match Compare Visualize

2G7E...

Slide 21

Filter Match Compare Visualize

DDIFF

Slide 22

Filter Match Compare Visualize

DDIFF – Detect similar files

Filter Match Compare Visualize

Slide 23

2G7E...

Slide 24

Filter Match Compare Visualize

2G7E...

60 %

20 %

0 %

0 %

0 %

Slide 25

Filter Match Compare Visualize

Similarity =
2× LCS(F

1
,F

2
)

Size(F
1
)+ Size(F

2
)

2G7E... 0 %

0 %

0 %

60 %

20 %

40 %

30 %

Slide 26

0 %

0 %

0 %

Filter Match Compare Visualize

Similarity =
2× LCS(F

1
,F

2
)

Size(F
1
)+ Size(F

2
)

...

...

2G7E... 0 %

0 %

0 %

60 %

20 %

40 %

30 %

Slide 27

0 %

0 %

0 %

Filter Match Compare Visualize

Hungarian Algorithm

...

...

FDIFF

Filter Match Compare Visualize

Slide 28

FDIFF

Filter Match Compare Visualize

Slide 29

FDIFF

Filter Match Compare Visualize

import java.util.List;

import java.util.Map;

public class CardPayment extends Payment {

private Integer installments;

}

import java.util.Map;

import java.util.List;

public class CardPayment extends Payment {

public Integer installments;

}

C:\ Directory 1\payment\CardPayment.java

C:\ Directory 2\payment\CardPayment.java

Slide 30

FDIFF

Filter Match Compare Visualize

import java.util.List;

import java.util.Map;

public class CardPayment extends Payment {

private Integer installments;

}

import java.util.Map;

import java.util.List;

public class CardPayment extends Payment {

public Integer installments;

}

C:\ Directory 1\payment\CardPayment.java

C:\ Directory 2\payment\CardPayment.java

Slide 31

FDIFF

Filter Match Compare Visualize

import java.util.List;

private Integer installments;

import java.util.List;

public Integer installments;

C:\ Directory 1\payment\CardPayment.java

C:\ Directory 2\payment\CardPayment.java

Slide 32

FDIFF

Filter Match Compare Visualize

import java.util.List;

private Integer installments;

import java.util.List;

public Integer installments;

C:\ Directory 1\payment\CardPayment.java

C:\ Directory 2\payment\CardPayment.java

Slide 33

FDIFF

Filter Match Compare Visualize

private Integer installments;

public Integer installments;

C:\ Directory 1\payment\CardPayment.java

C:\ Directory 2\payment\CardPayment.java

Slide 34

FDIFF

Filter Match Compare Visualize

Slide 35

FDIFF

Filter Match Compare Visualize

private

Integer

installments;

public

Integer

installments;

C:\ Directory 1\payment\CardPayment.java

C:\ Directory 2\payment\CardPayment.java

Slide 36

FDIFF

Filter Match Compare Visualize

private

Integer

installments;

public

Integer

installments;

C:\ Directory 1\payment\CardPayment.java

C:\ Directory 2\payment\CardPayment.java

Slide 37

FDIFF

Filter Match Compare Visualize

private

public

C:\ Directory 1\payment\CardPayment.java

C:\ Directory 2\payment\CardPayment.java

Slide 38

FDIFF

Filter Match Compare Visualize

import java.util.List;

import java.util.Map;

public class CardPayment extends Payment {

private Integer installments;

}

import java.util.Map;

import java.util.List;

public class CardPayment extends Payment {

public Integer installments;

}

C:\ Directory 1\payment\CardPayment.java

C:\ Directory 2\payment\CardPayment.java

Slide 39

DDIFF FDIFF

Overview vs. Pairwise Comparison vs. Multiple Comparison

Slide 40

Filter Match Compare Visualize

DDIFF – Overview

Filter Match Compare Visualize

Slide 41

FDIFF – Pairwise Comparison, Differences Perspective

(comparing the same file)

Filter Match Compare Visualize

Slide 42

v

FDIFF – Pairwise Comparison, Similarity perspective

(comparing different files)

Filter Match Compare Visualize

Slide 43

v

FDIFF – Multiple Comparison

Filter Match Compare Visualize

Slide 44

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

PLANNING AND EXECUTION

• Research questions:

• Which is the best granularity configuration for

IDiff?

• Does IDiff increase the precision (correctness)

when compared to a generic Diff tool?

• Does IDiff increase the recall (completeness)

when compared to a generic Diff tool?

• In which situations (refactoring types) IDiff

performs better than a generic Diff tool?

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 45

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

PLANNING AND EXECUTION

• Execution of 76 refactorings from the

Fowler’s book

• Comparison of the expected results with the

results provided by IDiff and WinMerge

• WinMerge selected as baseline out of a

survey with 63 developers

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 46

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

EVALUATION PROCESS

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 47

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

PRECISION/RECALL ANALYSIS

Summary distributions for

IDIFF and WinMerge

IDIFF

WinMerge

Precision Recall

F-measure

Line Word Character

(p-value = 0.015) (p-value < 0.001) (p-value = 0.548)

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 48

Line Word Character

(p-value = 0.270) (p-value = 0.007) (p-value < 0.001)

Line Word Character

(p-value = 0.015) (p-value = 0.05) (p-value = 0.003)

COMPARISON OF MEAN – WILCOXON TEST

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

• Reliability of measurements

• The use of 76 refactorings described in the Fowler's book

• The absence of experience with large projects leaves doubt

whether the result will be satisfactory in these scenarios

• WinMerge as baseline

MAIN THREATS TO VALIDITY

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 49

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

CONTRIBUTIONS

• IDiff provides results with higher precision if compared to

a generic Diff tool, without drastic reduction of recall

• IDiff employs efficient algorithms for detecting the

optimal content-based similarity amongst files

•Different visualizations (pairwise and multiple) and

according to different perspectives (similarities and

differences)

• The use of iterative granularity reduction to conciliate

precision and efficiency

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 50

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

FUTURE WORK

• Consider programming language grammars

• Develop a merge tool supported by the foundations of

this work

• Exploit parallel processing of ever-common multi-core

computers and GPU

• Combine with refactoring detection techniques by using

regular expressions over the diff results to index a

refactoring catalog

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 51

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

Towards a Difference Detection Algorithm

aware of Refactoring-related Changes

Fernanda Silva1 Eraldo Borel1 Evandro Lopes2 Leonardo Murta1

1 Computing Institute

Fluminense Federal University (UFF)

Niterói, Rio de Janeiro, Brazil

e-mail: {ffloriano,leomurta}@ic.uff.br

eraldoborel@id.uff.br

2 Department of Statistics

Fluminense Federal University (UFF)

Niterói, Rio de Janeiro, Brazil

e-mail: evandro_dalbem@id.uff.br

The Brazilian Symposium on

Software Engineering (SBES)

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

EVALUATION

IDIFF

IMPLEMENTATION

IDIFF ITERATIVE

DIFF ALGORITHM

MOTIVANTING

EXAMPLE

INTRODUCTION

CONCLUSIONS

PLANNING AND EXECUTION Inline Method

Precision Recall F-measure

IDIFF 1 1 1

WinMerge 0,56 0,73 0,63

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

Which is the best granularity configuration for

IDIFF?

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 54

Answer: Word
(Friedman test à Bonferroni corr. àWilcoxon test)

IDIF

F

DIFF

DIFF

DIFFDIFF

DIFF

EVALUATION

ITERATIVE DIFF

(IDIFF)

CONCLUSIONS

MOTIVATING

EXAMPLE

INTRODUCTION

Slide 55

In which situations (refactoring types) IDIFF is more

precise than a generic Diff tool?

Answer:

II – Composing

methods

IV – Making method

calls simpler

V – Moving features

between objects

VII – Simplifying

conditional

expression

Precision – word grain

56

Recall – word grain

57

F-measure – word grain

58

Related Work

• Clone detection

• Refactoring detection

• Diff

– Malpohl (2003): rename detection, language
specific

– Canfora et al. (2009): improvements over Unix
Diff, line grain

– Antoniol et al. (2004): evolution discontinuities,
language specific

59

