A GPU-based Architecture for Parallel
Image-aware Version Control

Instituto de Computacao

Universidade Federal Fluminense




Schedule

e Introduction

e GPU processing
e VCS operations
e Results

e Conclusion
e Future works

A GPU-based Architecture for Parallel Image-aware

Version Control



Introduction

e \Version control, nowadays, is considered a vital
component for supporting professional
software development.

» Mainly based on files and directories.

o Textual artifacts has a well established process.

e Unfortunately, VCS for binary data are not yet
well established.

A GPU-based Architecture for Parallel Image-aware

Version Control



Introduction

So many projects are highly binary data intensive!

Movie industry

Advertising Industry

Game Industry

Normally, has more
binary artifacts (sound,

3d models, images)
than textual artifacts

A GPU-based Architecture for Parallel Image-aware

Version Control



Introduction

e Normally, to deal with binary data, two paths are
used:

. Store the binary data as a whole between each
modification.

* Loose semantic information!
* Requires more storage space.
* No processing time.

. Implement algorithms to deal with these binary artifacts.
* Allows more semantic for the end user.
* Requires more processing and time!

A GPU-based Architecture for Parallel Image-aware
Version Control




Storing binary data as a whole

e What has been changed between these two
revisions?

J |
> | —— "
- s 4! : 3 '\. - -~
LY L e W
SN - -
> o ¥ |
. A o . »!
J WL b
IS e -
\ ) K 1%
~ -4 e I 5F ",:- 'y |
. ’ i . N
3
- S v A ~
‘I‘E‘ . !
J %’ & N
£ -

{2
o S . w AA
Revision 2

A GPU-based Architecture for Parallel Image-aware

Version Control



Storing binary data as a whole

e Normally, state-based VCS, such as Git, saves binary
data without any delta information.

. High network traffic in projects that uses a lot of binary
artifacts!

« Slow down operations of check —in and —out!

- More disk space required.
« Loose of productivity!

A GPU-based Architecture for Parallel Image-aware
Version Control



Semantic based algorithms

e Store delta information between binary artifacts.

e Less disk space required.
e Allows more semantic to be presented to user.

e On the other hand, normally requires a lot more
processing during check-in and —out operations!

A GPU-based Architecture for Parallel Image-aware
Version Control



Semantic based algorithms

e In order to process two single images for diff operation, as
example:
Width: 1024 Width: 1024

Height: 1024
Height: 1024

Revision 1 Revision 2

« Processing of 2.097.152 elements!

A GPU-based Architecture for Parallel Image-aware
Version Control




Semantic based algorithms

« Normally, images are composed pixels of three (RGB) or four
(RGBA) channels, for Red, Green, Blue and Alpha, requiring
processing each channel, individually during VCS operation.

Image Artifact Processing

7000 -

x 10000

6000

5000

3000
2000

1000 -

—
512x512 1024x1024 2048x2048

A GPU-based Architecture for Parallel Image-aware

Version Control

4096x4096

“ Operations



e Due to these observations, we are aimed to:

. Give semantic information for image type artifacts;

. Process as fast as possible diff, patch and merge operations
during check-in and —out;

« Use less space to store delta between revisions.

.« Using GPU due to problem characteristics (data
independency).

u\)
<
mescuna

A GPU-based Architecture for Parallel Image-aware
Version Control



Diff on IMUFF

e Aimed to locate differences between images
and save its delta.

» Uses the XOR operation on each channel to find its

Diff

C.At(x,y).R = A.At(x,y).R XOR B.At(x,y).R;
C.At(x,y).G = A.At(x,y).G XOR B.At(x,y).G;
C.At(x,y).B = A.At(x,y).B XOR B.At(x,y).B;

A GPU-based Architecture for Parallel Image-aware
Version Control




Diff on IMUFF

e As can be observed, most of our delta image is composed of
black colors (zeros).

« After compression, this delta leads to small size, requiring less storage
and network bandwidth.

« Usually, small deltas are expected between two consecutives
versions.

o Gives the user a high semantic information of the modification.

A GPU-based Architecture for Parallel Image-aware
Version Control



Patch on IMUFF

e Aimed to reconstruct others revisions.

« Like diff, uses the XOR operation on each channel
to reconstruct a revision.

Patch

C

B.At(x,y).R = A.At(x,y).R XOR C.At(x,y).R;
B.At(x,y).G = A.At(x,y).G XOR C.At(x,y).G;
B.At(x,y).B = A.At(x,y).B XOR C.At(x,y).B;

P

A GPU-based Architecture for Parallel Image-aware

Version Control



Patch on IMUFF

e Some properties of XOR operation in IMUFF:
patch(A,C) = A if Cis an empty delta
patch (A,C) = patch(CA) = B
patch (A,C) = B and patch(B,C) = A

B.At(x,y).R = A.At(x,y).R XOR C.At(x,y).R;
B.At(x,y).G = A.At(x,y).G XOR C.At(x,y).G;
B.At(x,y).B = A.At(x,y).B XOR C.At(x,y).B;

P

A GPU-based Architecture for Parallel Image-aware

Version Control



Merge on IMUFF

e Performed to conciliate two revisions created
in parallel.

e Uses the previously diff and patch operations.

A GPU-based Architecture for Parallel Image-aware
Version Control



Merge on IMUFF

e Performed to conciliates two revisions created

N pa ra | I el . In case the same image area are changed, a
conflict in generated, like a common line based

V(CS.

A

=

: C=Diff(A,B) o 'E=Patch(D,C)
C=Diff{A.B) E=Patch(D,C)

A GPU-based Architecture for Parallel Image-aware

Version Control



Results

o In order to perform these operations on IMUFF, a GUI is

freely available at http://josericardojunior.com/imuff/.

_ C=Diff(A,8)
_ B=Patch(A,C)

D=Merge(A,8,C)

Proc. Time:
4.865 ms

Save

Load . C Save . Load ; D % Save ‘

A GPU-based Architecture for Parallel Image-aware

Version Control


http://josericardojunior.com/imuff/

Results

e Processing time:

Image Processing Time

10000
1000
& CPU Diff
g i GPU Diff
@ 100
= CPU Patch
£
& GPU Patch
CPU Merge
. GPU Merge
X L. L - L - -
512x512 1024x1024 2048x2048 4096x4096
Image Size

*Using logio scale.

A GPU-based Architecture for Parallel Image-aware

Version Control



Results

o Comparison between storage for the whole
binary data and our delta.

Storage Space

100
11,777958
10 3 5,841752 p :

1 0,44802 |
0,151375
0,085436

01 ' ' ' 0,024877

0,006655
0,01 - - - - - - - - .
& Original

Size (MBytes)

0,001 & Delta

0,0001 - - - - - - - -
0,000001
512x512 1024x1024 2048x2048 4096x4096

Image Size
*Using the “Where is Waldo” sample.
*Using logio scale.

A GPU-based Architecture for Parallel Image-aware
Version Control




e Alighed images.
« Reasonable for VCS as its track evolutions.

e All evolutions must maintain the same image’s
resolution.

e Only work for PNG images.

A GPU-based Architecture for Parallel Image-aware
Version Control




e IMUFF is not a VCS as it.

« Instead, provides infrastructure to allow any VCS to
better work with images artifact.

e We are planning to develop a plugin for Git and
Subversion to deal with image artifacts.

e Study how to work with movie artifacts.

A GPU-based Architecture for Parallel Image-aware

Version Control



Conclusion

e Using GPU for VCS processing can speedup up
to 55x CPU processing.

e Working with delta for image artifacts can
reduce greatly the space required to store it.

e Using IMUFF gives the user sematic over its
image artifacts.

o Allow faster check-in and —out of image
artifacts, also reducing network bandwidth for
distributed VCS systems.

A GPU-based Architecture for Parallel Image-aware

Version Control



A GPU-based Architecture for Parallel
Image-aware Version Control

Instituto de Computacao

Universidade Federal Fluminense




Using GPU for VCS operations

e GPU (Graphics Processor Unit) is a massively
multi-threaded processor capable of perform
almost thousands of operations/second.

Theoretical GB/s

] ' e Presented in almost
c every personal
. computer!

40

20

Harpertown

0 ‘mortmwood
2003 2004 200% 2006 2007 2008 2009 2010

A GPU-based Architecture for Parallel Image-aware

Version Control



Using GPU for VCS operations

e Allows for heterogeneous environment.
» Both GPU and CPU doing different tasks at the

same time.
instruction @

Busy
Idle

A GPU-based Architecture for Parallel Image-aware

Version Control



